Metamath Proof Explorer


Theorem filn0

Description: The empty set is not a filter. Remark below Definition 1 of BourbakiTop1 p. I.36. (Contributed by FL, 30-Oct-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filn0
|- ( F e. ( Fil ` X ) -> F =/= (/) )

Proof

Step Hyp Ref Expression
1 filtop
 |-  ( F e. ( Fil ` X ) -> X e. F )
2 1 ne0d
 |-  ( F e. ( Fil ` X ) -> F =/= (/) )