| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfil | 
							 |-  ( F e. ( Fil ` X ) <-> ( F e. ( fBas ` X ) /\ A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simprbi | 
							 |-  ( F e. ( Fil ` X ) -> A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elfvdm | 
							 |-  ( F e. ( Fil ` X ) -> X e. dom Fil )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( A e. F /\ B C_ X /\ A C_ B ) -> B C_ X )  | 
						
						
							| 6 | 
							
								
							 | 
							elpw2g | 
							 |-  ( X e. dom Fil -> ( B e. ~P X <-> B C_ X ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpar | 
							 |-  ( ( X e. dom Fil /\ B C_ X ) -> B e. ~P X )  | 
						
						
							| 8 | 
							
								4 5 7
							 | 
							syl2an | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> B e. ~P X )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A e. F )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A C_ B )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							elpwd | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A e. ~P B )  | 
						
						
							| 12 | 
							
								
							 | 
							inelcm | 
							 |-  ( ( A e. F /\ A e. ~P B ) -> ( F i^i ~P B ) =/= (/) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							syl2anc | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> ( F i^i ~P B ) =/= (/) )  | 
						
						
							| 14 | 
							
								
							 | 
							pweq | 
							 |-  ( x = B -> ~P x = ~P B )  | 
						
						
							| 15 | 
							
								14
							 | 
							ineq2d | 
							 |-  ( x = B -> ( F i^i ~P x ) = ( F i^i ~P B ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							neeq1d | 
							 |-  ( x = B -> ( ( F i^i ~P x ) =/= (/) <-> ( F i^i ~P B ) =/= (/) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = B -> ( x e. F <-> B e. F ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							imbi12d | 
							 |-  ( x = B -> ( ( ( F i^i ~P x ) =/= (/) -> x e. F ) <-> ( ( F i^i ~P B ) =/= (/) -> B e. F ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							rspccv | 
							 |-  ( A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) -> ( B e. ~P X -> ( ( F i^i ~P B ) =/= (/) -> B e. F ) ) )  | 
						
						
							| 20 | 
							
								3 8 13 19
							 | 
							syl3c | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> B e. F )  |