Metamath Proof Explorer


Theorem filssufil

Description: A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 .) (Contributed by Jeff Hankins, 2-Dec-2009) (Revised by Stefan O'Rear, 29-Jul-2015)

Ref Expression
Assertion filssufil
|- ( F e. ( Fil ` X ) -> E. f e. ( UFil ` X ) F C_ f )

Proof

Step Hyp Ref Expression
1 filtop
 |-  ( F e. ( Fil ` X ) -> X e. F )
2 pwexg
 |-  ( X e. F -> ~P X e. _V )
3 pwexg
 |-  ( ~P X e. _V -> ~P ~P X e. _V )
4 numth3
 |-  ( ~P ~P X e. _V -> ~P ~P X e. dom card )
5 1 2 3 4 4syl
 |-  ( F e. ( Fil ` X ) -> ~P ~P X e. dom card )
6 filssufilg
 |-  ( ( F e. ( Fil ` X ) /\ ~P ~P X e. dom card ) -> E. f e. ( UFil ` X ) F C_ f )
7 5 6 mpdan
 |-  ( F e. ( Fil ` X ) -> E. f e. ( UFil ` X ) F C_ f )