Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
|- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
2 |
|
fbasne0 |
|- ( F e. ( fBas ` X ) -> F =/= (/) ) |
3 |
1 2
|
syl |
|- ( F e. ( Fil ` X ) -> F =/= (/) ) |
4 |
|
n0 |
|- ( F =/= (/) <-> E. x x e. F ) |
5 |
|
filelss |
|- ( ( F e. ( Fil ` X ) /\ x e. F ) -> x C_ X ) |
6 |
|
ssid |
|- X C_ X |
7 |
|
filss |
|- ( ( F e. ( Fil ` X ) /\ ( x e. F /\ X C_ X /\ x C_ X ) ) -> X e. F ) |
8 |
7
|
3exp2 |
|- ( F e. ( Fil ` X ) -> ( x e. F -> ( X C_ X -> ( x C_ X -> X e. F ) ) ) ) |
9 |
8
|
imp |
|- ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( X C_ X -> ( x C_ X -> X e. F ) ) ) |
10 |
6 9
|
mpi |
|- ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( x C_ X -> X e. F ) ) |
11 |
5 10
|
mpd |
|- ( ( F e. ( Fil ` X ) /\ x e. F ) -> X e. F ) |
12 |
11
|
ex |
|- ( F e. ( Fil ` X ) -> ( x e. F -> X e. F ) ) |
13 |
12
|
exlimdv |
|- ( F e. ( Fil ` X ) -> ( E. x x e. F -> X e. F ) ) |
14 |
4 13
|
syl5bi |
|- ( F e. ( Fil ` X ) -> ( F =/= (/) -> X e. F ) ) |
15 |
3 14
|
mpd |
|- ( F e. ( Fil ` X ) -> X e. F ) |