| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							filfbas | 
							 |-  ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fbasne0 | 
							 |-  ( F e. ( fBas ` X ) -> F =/= (/) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( F e. ( Fil ` X ) -> F =/= (/) )  | 
						
						
							| 4 | 
							
								
							 | 
							n0 | 
							 |-  ( F =/= (/) <-> E. x x e. F )  | 
						
						
							| 5 | 
							
								
							 | 
							filelss | 
							 |-  ( ( F e. ( Fil ` X ) /\ x e. F ) -> x C_ X )  | 
						
						
							| 6 | 
							
								
							 | 
							ssid | 
							 |-  X C_ X  | 
						
						
							| 7 | 
							
								
							 | 
							filss | 
							 |-  ( ( F e. ( Fil ` X ) /\ ( x e. F /\ X C_ X /\ x C_ X ) ) -> X e. F )  | 
						
						
							| 8 | 
							
								7
							 | 
							3exp2 | 
							 |-  ( F e. ( Fil ` X ) -> ( x e. F -> ( X C_ X -> ( x C_ X -> X e. F ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							 |-  ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( X C_ X -> ( x C_ X -> X e. F ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							mpi | 
							 |-  ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( x C_ X -> X e. F ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							mpd | 
							 |-  ( ( F e. ( Fil ` X ) /\ x e. F ) -> X e. F )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							 |-  ( F e. ( Fil ` X ) -> ( x e. F -> X e. F ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							exlimdv | 
							 |-  ( F e. ( Fil ` X ) -> ( E. x x e. F -> X e. F ) )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							biimtrid | 
							 |-  ( F e. ( Fil ` X ) -> ( F =/= (/) -> X e. F ) )  | 
						
						
							| 15 | 
							
								3 14
							 | 
							mpd | 
							 |-  ( F e. ( Fil ` X ) -> X e. F )  |