Step |
Hyp |
Ref |
Expression |
1 |
|
df-rn |
|- ran F = dom `' F |
2 |
|
frn |
|- ( F : A --> B -> ran F C_ B ) |
3 |
2
|
adantr |
|- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ran F C_ B ) |
4 |
1 3
|
eqsstrrid |
|- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> dom `' F C_ B ) |
5 |
|
ssdisj |
|- ( ( dom `' F C_ B /\ ( B i^i C ) = (/) ) -> ( dom `' F i^i C ) = (/) ) |
6 |
4 5
|
sylancom |
|- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ( dom `' F i^i C ) = (/) ) |
7 |
|
imadisj |
|- ( ( `' F " C ) = (/) <-> ( dom `' F i^i C ) = (/) ) |
8 |
6 7
|
sylibr |
|- ( ( F : A --> B /\ ( B i^i C ) = (/) ) -> ( `' F " C ) = (/) ) |