Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
2 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
3 |
2
|
adantr |
|- ( ( F : A --> B /\ dom F = A ) -> F Fn A ) |
4 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
5 |
3 4
|
sylib |
|- ( ( F : A --> B /\ dom F = A ) -> F : A -onto-> ran F ) |
6 |
|
imaeq2 |
|- ( A = dom F -> ( F " A ) = ( F " dom F ) ) |
7 |
|
imadmrn |
|- ( F " dom F ) = ran F |
8 |
6 7
|
eqtrdi |
|- ( A = dom F -> ( F " A ) = ran F ) |
9 |
8
|
eqcoms |
|- ( dom F = A -> ( F " A ) = ran F ) |
10 |
9
|
adantl |
|- ( ( F : A --> B /\ dom F = A ) -> ( F " A ) = ran F ) |
11 |
|
foeq3 |
|- ( ( F " A ) = ran F -> ( F : A -onto-> ( F " A ) <-> F : A -onto-> ran F ) ) |
12 |
10 11
|
syl |
|- ( ( F : A --> B /\ dom F = A ) -> ( F : A -onto-> ( F " A ) <-> F : A -onto-> ran F ) ) |
13 |
5 12
|
mpbird |
|- ( ( F : A --> B /\ dom F = A ) -> F : A -onto-> ( F " A ) ) |
14 |
1 13
|
mpdan |
|- ( F : A --> B -> F : A -onto-> ( F " A ) ) |