| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
| 2 |
|
frel |
|- ( F : A --> B -> Rel F ) |
| 3 |
|
resdm |
|- ( Rel F -> ( F |` dom F ) = F ) |
| 4 |
3
|
eqcomd |
|- ( Rel F -> F = ( F |` dom F ) ) |
| 5 |
2 4
|
syl |
|- ( F : A --> B -> F = ( F |` dom F ) ) |
| 6 |
|
reseq2 |
|- ( dom F = A -> ( F |` dom F ) = ( F |` A ) ) |
| 7 |
5 6
|
sylan9eq |
|- ( ( F : A --> B /\ dom F = A ) -> F = ( F |` A ) ) |
| 8 |
1 7
|
mpdan |
|- ( F : A --> B -> F = ( F |` A ) ) |
| 9 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
| 10 |
|
eqimss2 |
|- ( dom F = A -> A C_ dom F ) |
| 11 |
1 10
|
syl |
|- ( F : A --> B -> A C_ dom F ) |
| 12 |
9 11
|
jca |
|- ( F : A --> B -> ( Fun F /\ A C_ dom F ) ) |
| 13 |
12
|
adantr |
|- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( Fun F /\ A C_ dom F ) ) |
| 14 |
|
fores |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
| 15 |
13 14
|
syl |
|- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
| 16 |
|
foeq1 |
|- ( F = ( F |` A ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) |
| 17 |
16
|
adantl |
|- ( ( F : A --> B /\ F = ( F |` A ) ) -> ( F : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> ( F " A ) ) ) |
| 18 |
15 17
|
mpbird |
|- ( ( F : A --> B /\ F = ( F |` A ) ) -> F : A -onto-> ( F " A ) ) |
| 19 |
8 18
|
mpdan |
|- ( F : A --> B -> F : A -onto-> ( F " A ) ) |