Step |
Hyp |
Ref |
Expression |
1 |
|
fvproj.h |
|- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
2 |
|
fimaproj.f |
|- ( ph -> F Fn A ) |
3 |
|
fimaproj.g |
|- ( ph -> G Fn B ) |
4 |
|
fimaproj.x |
|- ( ph -> X C_ A ) |
5 |
|
fimaproj.y |
|- ( ph -> Y C_ B ) |
6 |
|
opex |
|- <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. _V |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
10 |
9
|
fveq2d |
|- ( z = <. x , y >. -> ( F ` ( 1st ` z ) ) = ( F ` x ) ) |
11 |
7 8
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
12 |
11
|
fveq2d |
|- ( z = <. x , y >. -> ( G ` ( 2nd ` z ) ) = ( G ` y ) ) |
13 |
10 12
|
opeq12d |
|- ( z = <. x , y >. -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. = <. ( F ` x ) , ( G ` y ) >. ) |
14 |
13
|
mpompt |
|- ( z e. ( A X. B ) |-> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
15 |
1 14
|
eqtr4i |
|- H = ( z e. ( A X. B ) |-> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
16 |
6 15
|
fnmpti |
|- H Fn ( A X. B ) |
17 |
|
xpss12 |
|- ( ( X C_ A /\ Y C_ B ) -> ( X X. Y ) C_ ( A X. B ) ) |
18 |
4 5 17
|
syl2anc |
|- ( ph -> ( X X. Y ) C_ ( A X. B ) ) |
19 |
|
fvelimab |
|- ( ( H Fn ( A X. B ) /\ ( X X. Y ) C_ ( A X. B ) ) -> ( c e. ( H " ( X X. Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
20 |
16 18 19
|
sylancr |
|- ( ph -> ( c e. ( H " ( X X. Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
21 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> a e. X ) |
22 |
|
simplr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> b e. Y ) |
23 |
|
opelxpi |
|- ( ( a e. X /\ b e. Y ) -> <. a , b >. e. ( X X. Y ) ) |
24 |
21 22 23
|
syl2anc |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> <. a , b >. e. ( X X. Y ) ) |
25 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( F ` a ) = ( 1st ` c ) ) |
26 |
|
simpr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( G ` b ) = ( 2nd ` c ) ) |
27 |
25 26
|
opeq12d |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> <. ( F ` a ) , ( G ` b ) >. = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
28 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> X C_ A ) |
29 |
28 21
|
sseldd |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> a e. A ) |
30 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> Y C_ B ) |
31 |
30 22
|
sseldd |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> b e. B ) |
32 |
1 29 31
|
fvproj |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( H ` <. a , b >. ) = <. ( F ` a ) , ( G ` b ) >. ) |
33 |
|
1st2nd2 |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> c = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
34 |
33
|
ad5antlr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> c = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
35 |
27 32 34
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( H ` <. a , b >. ) = c ) |
36 |
|
fveqeq2 |
|- ( z = <. a , b >. -> ( ( H ` z ) = c <-> ( H ` <. a , b >. ) = c ) ) |
37 |
36
|
rspcev |
|- ( ( <. a , b >. e. ( X X. Y ) /\ ( H ` <. a , b >. ) = c ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
38 |
24 35 37
|
syl2anc |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
39 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> G Fn B ) |
40 |
|
fnfun |
|- ( G Fn B -> Fun G ) |
41 |
39 40
|
syl |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> Fun G ) |
42 |
|
xp2nd |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> ( 2nd ` c ) e. ( G " Y ) ) |
43 |
42
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> ( 2nd ` c ) e. ( G " Y ) ) |
44 |
|
fvelima |
|- ( ( Fun G /\ ( 2nd ` c ) e. ( G " Y ) ) -> E. b e. Y ( G ` b ) = ( 2nd ` c ) ) |
45 |
41 43 44
|
syl2anc |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> E. b e. Y ( G ` b ) = ( 2nd ` c ) ) |
46 |
38 45
|
r19.29a |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
47 |
2
|
adantr |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> F Fn A ) |
48 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
49 |
47 48
|
syl |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> Fun F ) |
50 |
|
xp1st |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> ( 1st ` c ) e. ( F " X ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> ( 1st ` c ) e. ( F " X ) ) |
52 |
|
fvelima |
|- ( ( Fun F /\ ( 1st ` c ) e. ( F " X ) ) -> E. a e. X ( F ` a ) = ( 1st ` c ) ) |
53 |
49 51 52
|
syl2anc |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> E. a e. X ( F ` a ) = ( 1st ` c ) ) |
54 |
46 53
|
r19.29a |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
55 |
|
simpr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) = c ) |
56 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( X X. Y ) C_ ( A X. B ) ) |
57 |
|
simplr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> z e. ( X X. Y ) ) |
58 |
56 57
|
sseldd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> z e. ( A X. B ) ) |
59 |
15
|
fvmpt2 |
|- ( ( z e. ( A X. B ) /\ <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. _V ) -> ( H ` z ) = <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
60 |
58 6 59
|
sylancl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) = <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
61 |
2
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> F Fn A ) |
62 |
4
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> X C_ A ) |
63 |
|
xp1st |
|- ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) |
64 |
57 63
|
syl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( 1st ` z ) e. X ) |
65 |
|
fnfvima |
|- ( ( F Fn A /\ X C_ A /\ ( 1st ` z ) e. X ) -> ( F ` ( 1st ` z ) ) e. ( F " X ) ) |
66 |
61 62 64 65
|
syl3anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( F ` ( 1st ` z ) ) e. ( F " X ) ) |
67 |
3
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> G Fn B ) |
68 |
5
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> Y C_ B ) |
69 |
|
xp2nd |
|- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
70 |
57 69
|
syl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( 2nd ` z ) e. Y ) |
71 |
|
fnfvima |
|- ( ( G Fn B /\ Y C_ B /\ ( 2nd ` z ) e. Y ) -> ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) |
72 |
67 68 70 71
|
syl3anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) |
73 |
|
opelxpi |
|- ( ( ( F ` ( 1st ` z ) ) e. ( F " X ) /\ ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. ( ( F " X ) X. ( G " Y ) ) ) |
74 |
66 72 73
|
syl2anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. ( ( F " X ) X. ( G " Y ) ) ) |
75 |
60 74
|
eqeltrd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) e. ( ( F " X ) X. ( G " Y ) ) ) |
76 |
55 75
|
eqeltrrd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> c e. ( ( F " X ) X. ( G " Y ) ) ) |
77 |
76
|
r19.29an |
|- ( ( ph /\ E. z e. ( X X. Y ) ( H ` z ) = c ) -> c e. ( ( F " X ) X. ( G " Y ) ) ) |
78 |
54 77
|
impbida |
|- ( ph -> ( c e. ( ( F " X ) X. ( G " Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
79 |
20 78
|
bitr4d |
|- ( ph -> ( c e. ( H " ( X X. Y ) ) <-> c e. ( ( F " X ) X. ( G " Y ) ) ) ) |
80 |
79
|
eqrdv |
|- ( ph -> ( H " ( X X. Y ) ) = ( ( F " X ) X. ( G " Y ) ) ) |