Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) ) |
2 |
|
enfi |
|- ( A ~~ b -> ( A e. Fin <-> b e. Fin ) ) |
3 |
|
onfin |
|- ( b e. On -> ( b e. Fin <-> b e. _om ) ) |
4 |
2 3
|
sylan9bbr |
|- ( ( b e. On /\ A ~~ b ) -> ( A e. Fin <-> b e. _om ) ) |
5 |
4
|
biimpd |
|- ( ( b e. On /\ A ~~ b ) -> ( A e. Fin -> b e. _om ) ) |
6 |
5
|
con3d |
|- ( ( b e. On /\ A ~~ b ) -> ( -. b e. _om -> -. A e. Fin ) ) |
7 |
6
|
impancom |
|- ( ( b e. On /\ -. b e. _om ) -> ( A ~~ b -> -. A e. Fin ) ) |
8 |
1 7
|
sylbi |
|- ( b e. ( On \ _om ) -> ( A ~~ b -> -. A e. Fin ) ) |
9 |
8
|
rexlimiv |
|- ( E. b e. ( On \ _om ) A ~~ b -> -. A e. Fin ) |
10 |
9
|
con2i |
|- ( A e. Fin -> -. E. b e. ( On \ _om ) A ~~ b ) |
11 |
|
isfin7 |
|- ( A e. Fin -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
12 |
10 11
|
mpbird |
|- ( A e. Fin -> A e. Fin7 ) |