Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fin1a2lem.a | |- S = ( x e. On |-> suc x ) |
|
Assertion | fin1a2lem1 | |- ( A e. On -> ( S ` A ) = suc A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.a | |- S = ( x e. On |-> suc x ) |
|
2 | suceloni | |- ( A e. On -> suc A e. On ) |
|
3 | suceq | |- ( a = A -> suc a = suc A ) |
|
4 | suceq | |- ( x = a -> suc x = suc a ) |
|
5 | 4 | cbvmptv | |- ( x e. On |-> suc x ) = ( a e. On |-> suc a ) |
6 | 1 5 | eqtri | |- S = ( a e. On |-> suc a ) |
7 | 3 6 | fvmptg | |- ( ( A e. On /\ suc A e. On ) -> ( S ` A ) = suc A ) |
8 | 2 7 | mpdan | |- ( A e. On -> ( S ` A ) = suc A ) |