Metamath Proof Explorer


Theorem fin1a2lem1

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a
|- S = ( x e. On |-> suc x )
Assertion fin1a2lem1
|- ( A e. On -> ( S ` A ) = suc A )

Proof

Step Hyp Ref Expression
1 fin1a2lem.a
 |-  S = ( x e. On |-> suc x )
2 suceloni
 |-  ( A e. On -> suc A e. On )
3 suceq
 |-  ( a = A -> suc a = suc A )
4 suceq
 |-  ( x = a -> suc x = suc a )
5 4 cbvmptv
 |-  ( x e. On |-> suc x ) = ( a e. On |-> suc a )
6 1 5 eqtri
 |-  S = ( a e. On |-> suc a )
7 3 6 fvmptg
 |-  ( ( A e. On /\ suc A e. On ) -> ( S ` A ) = suc A )
8 2 7 mpdan
 |-  ( A e. On -> ( S ` A ) = suc A )