| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqneqall |  |-  ( a = (/) -> ( a =/= (/) -> ( [C.] Or a -> U. a e. a ) ) ) | 
						
							| 2 |  | tru |  |-  T. | 
						
							| 3 | 2 | a1i |  |-  ( a = (/) -> T. ) | 
						
							| 4 | 1 3 | 2thd |  |-  ( a = (/) -> ( ( a =/= (/) -> ( [C.] Or a -> U. a e. a ) ) <-> T. ) ) | 
						
							| 5 |  | neeq1 |  |-  ( a = b -> ( a =/= (/) <-> b =/= (/) ) ) | 
						
							| 6 |  | soeq2 |  |-  ( a = b -> ( [C.] Or a <-> [C.] Or b ) ) | 
						
							| 7 |  | unieq |  |-  ( a = b -> U. a = U. b ) | 
						
							| 8 |  | id |  |-  ( a = b -> a = b ) | 
						
							| 9 | 7 8 | eleq12d |  |-  ( a = b -> ( U. a e. a <-> U. b e. b ) ) | 
						
							| 10 | 6 9 | imbi12d |  |-  ( a = b -> ( ( [C.] Or a -> U. a e. a ) <-> ( [C.] Or b -> U. b e. b ) ) ) | 
						
							| 11 | 5 10 | imbi12d |  |-  ( a = b -> ( ( a =/= (/) -> ( [C.] Or a -> U. a e. a ) ) <-> ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) ) ) | 
						
							| 12 |  | neeq1 |  |-  ( a = ( b u. { c } ) -> ( a =/= (/) <-> ( b u. { c } ) =/= (/) ) ) | 
						
							| 13 |  | soeq2 |  |-  ( a = ( b u. { c } ) -> ( [C.] Or a <-> [C.] Or ( b u. { c } ) ) ) | 
						
							| 14 |  | unieq |  |-  ( a = ( b u. { c } ) -> U. a = U. ( b u. { c } ) ) | 
						
							| 15 |  | id |  |-  ( a = ( b u. { c } ) -> a = ( b u. { c } ) ) | 
						
							| 16 | 14 15 | eleq12d |  |-  ( a = ( b u. { c } ) -> ( U. a e. a <-> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 17 | 13 16 | imbi12d |  |-  ( a = ( b u. { c } ) -> ( ( [C.] Or a -> U. a e. a ) <-> ( [C.] Or ( b u. { c } ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) ) | 
						
							| 18 | 12 17 | imbi12d |  |-  ( a = ( b u. { c } ) -> ( ( a =/= (/) -> ( [C.] Or a -> U. a e. a ) ) <-> ( ( b u. { c } ) =/= (/) -> ( [C.] Or ( b u. { c } ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) ) ) | 
						
							| 19 |  | neeq1 |  |-  ( a = A -> ( a =/= (/) <-> A =/= (/) ) ) | 
						
							| 20 |  | soeq2 |  |-  ( a = A -> ( [C.] Or a <-> [C.] Or A ) ) | 
						
							| 21 |  | unieq |  |-  ( a = A -> U. a = U. A ) | 
						
							| 22 |  | id |  |-  ( a = A -> a = A ) | 
						
							| 23 | 21 22 | eleq12d |  |-  ( a = A -> ( U. a e. a <-> U. A e. A ) ) | 
						
							| 24 | 20 23 | imbi12d |  |-  ( a = A -> ( ( [C.] Or a -> U. a e. a ) <-> ( [C.] Or A -> U. A e. A ) ) ) | 
						
							| 25 | 19 24 | imbi12d |  |-  ( a = A -> ( ( a =/= (/) -> ( [C.] Or a -> U. a e. a ) ) <-> ( A =/= (/) -> ( [C.] Or A -> U. A e. A ) ) ) ) | 
						
							| 26 |  | unisnv |  |-  U. { c } = c | 
						
							| 27 |  | vsnid |  |-  c e. { c } | 
						
							| 28 | 26 27 | eqeltri |  |-  U. { c } e. { c } | 
						
							| 29 |  | uneq1 |  |-  ( b = (/) -> ( b u. { c } ) = ( (/) u. { c } ) ) | 
						
							| 30 |  | uncom |  |-  ( (/) u. { c } ) = ( { c } u. (/) ) | 
						
							| 31 |  | un0 |  |-  ( { c } u. (/) ) = { c } | 
						
							| 32 | 30 31 | eqtri |  |-  ( (/) u. { c } ) = { c } | 
						
							| 33 | 29 32 | eqtrdi |  |-  ( b = (/) -> ( b u. { c } ) = { c } ) | 
						
							| 34 | 33 | unieqd |  |-  ( b = (/) -> U. ( b u. { c } ) = U. { c } ) | 
						
							| 35 | 34 33 | eleq12d |  |-  ( b = (/) -> ( U. ( b u. { c } ) e. ( b u. { c } ) <-> U. { c } e. { c } ) ) | 
						
							| 36 | 28 35 | mpbiri |  |-  ( b = (/) -> U. ( b u. { c } ) e. ( b u. { c } ) ) | 
						
							| 37 | 36 | a1d |  |-  ( b = (/) -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b = (/) ) -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> b =/= (/) ) | 
						
							| 40 |  | ssun1 |  |-  b C_ ( b u. { c } ) | 
						
							| 41 |  | simpl2 |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> [C.] Or ( b u. { c } ) ) | 
						
							| 42 |  | soss |  |-  ( b C_ ( b u. { c } ) -> ( [C.] Or ( b u. { c } ) -> [C.] Or b ) ) | 
						
							| 43 | 40 41 42 | mpsyl |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> [C.] Or b ) | 
						
							| 44 |  | uniun |  |-  U. ( b u. { c } ) = ( U. b u. U. { c } ) | 
						
							| 45 | 26 | uneq2i |  |-  ( U. b u. U. { c } ) = ( U. b u. c ) | 
						
							| 46 | 44 45 | eqtri |  |-  U. ( b u. { c } ) = ( U. b u. c ) | 
						
							| 47 |  | simprr |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> U. b e. b ) | 
						
							| 48 |  | simpl2 |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> [C.] Or ( b u. { c } ) ) | 
						
							| 49 |  | elun1 |  |-  ( U. b e. b -> U. b e. ( b u. { c } ) ) | 
						
							| 50 | 49 | ad2antll |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> U. b e. ( b u. { c } ) ) | 
						
							| 51 |  | ssun2 |  |-  { c } C_ ( b u. { c } ) | 
						
							| 52 | 51 27 | sselii |  |-  c e. ( b u. { c } ) | 
						
							| 53 | 52 | a1i |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> c e. ( b u. { c } ) ) | 
						
							| 54 |  | sorpssi |  |-  ( ( [C.] Or ( b u. { c } ) /\ ( U. b e. ( b u. { c } ) /\ c e. ( b u. { c } ) ) ) -> ( U. b C_ c \/ c C_ U. b ) ) | 
						
							| 55 | 48 50 53 54 | syl12anc |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> ( U. b C_ c \/ c C_ U. b ) ) | 
						
							| 56 |  | ssequn1 |  |-  ( U. b C_ c <-> ( U. b u. c ) = c ) | 
						
							| 57 | 52 | a1i |  |-  ( U. b e. b -> c e. ( b u. { c } ) ) | 
						
							| 58 |  | eleq1 |  |-  ( ( U. b u. c ) = c -> ( ( U. b u. c ) e. ( b u. { c } ) <-> c e. ( b u. { c } ) ) ) | 
						
							| 59 | 57 58 | imbitrrid |  |-  ( ( U. b u. c ) = c -> ( U. b e. b -> ( U. b u. c ) e. ( b u. { c } ) ) ) | 
						
							| 60 | 56 59 | sylbi |  |-  ( U. b C_ c -> ( U. b e. b -> ( U. b u. c ) e. ( b u. { c } ) ) ) | 
						
							| 61 | 60 | impcom |  |-  ( ( U. b e. b /\ U. b C_ c ) -> ( U. b u. c ) e. ( b u. { c } ) ) | 
						
							| 62 |  | uncom |  |-  ( U. b u. c ) = ( c u. U. b ) | 
						
							| 63 |  | ssequn1 |  |-  ( c C_ U. b <-> ( c u. U. b ) = U. b ) | 
						
							| 64 |  | eleq1 |  |-  ( ( c u. U. b ) = U. b -> ( ( c u. U. b ) e. ( b u. { c } ) <-> U. b e. ( b u. { c } ) ) ) | 
						
							| 65 | 49 64 | imbitrrid |  |-  ( ( c u. U. b ) = U. b -> ( U. b e. b -> ( c u. U. b ) e. ( b u. { c } ) ) ) | 
						
							| 66 | 63 65 | sylbi |  |-  ( c C_ U. b -> ( U. b e. b -> ( c u. U. b ) e. ( b u. { c } ) ) ) | 
						
							| 67 | 66 | impcom |  |-  ( ( U. b e. b /\ c C_ U. b ) -> ( c u. U. b ) e. ( b u. { c } ) ) | 
						
							| 68 | 62 67 | eqeltrid |  |-  ( ( U. b e. b /\ c C_ U. b ) -> ( U. b u. c ) e. ( b u. { c } ) ) | 
						
							| 69 | 61 68 | jaodan |  |-  ( ( U. b e. b /\ ( U. b C_ c \/ c C_ U. b ) ) -> ( U. b u. c ) e. ( b u. { c } ) ) | 
						
							| 70 | 47 55 69 | syl2anc |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> ( U. b u. c ) e. ( b u. { c } ) ) | 
						
							| 71 | 46 70 | eqeltrid |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ ( b =/= (/) /\ U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) | 
						
							| 72 | 71 | expr |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> ( U. b e. b -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 73 | 43 72 | embantd |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> ( ( [C.] Or b -> U. b e. b ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 74 | 39 73 | embantd |  |-  ( ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) /\ b =/= (/) ) -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 75 | 38 74 | pm2.61dane |  |-  ( ( b e. Fin /\ [C.] Or ( b u. { c } ) /\ ( b u. { c } ) =/= (/) ) -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) | 
						
							| 76 | 75 | 3exp |  |-  ( b e. Fin -> ( [C.] Or ( b u. { c } ) -> ( ( b u. { c } ) =/= (/) -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) ) ) | 
						
							| 77 | 76 | com24 |  |-  ( b e. Fin -> ( ( b =/= (/) -> ( [C.] Or b -> U. b e. b ) ) -> ( ( b u. { c } ) =/= (/) -> ( [C.] Or ( b u. { c } ) -> U. ( b u. { c } ) e. ( b u. { c } ) ) ) ) ) | 
						
							| 78 | 4 11 18 25 2 77 | findcard2 |  |-  ( A e. Fin -> ( A =/= (/) -> ( [C.] Or A -> U. A e. A ) ) ) | 
						
							| 79 | 78 | 3imp21 |  |-  ( ( A =/= (/) /\ A e. Fin /\ [C.] Or A ) -> U. A e. A ) |