Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
|- E = ( x e. _om |-> ( 2o .o x ) ) |
2 |
|
nneob |
|- ( A e. _om -> ( E. a e. _om A = ( 2o .o a ) <-> -. E. a e. _om suc A = ( 2o .o a ) ) ) |
3 |
1
|
fin1a2lem4 |
|- E : _om -1-1-> _om |
4 |
|
f1fn |
|- ( E : _om -1-1-> _om -> E Fn _om ) |
5 |
3 4
|
ax-mp |
|- E Fn _om |
6 |
|
fvelrnb |
|- ( E Fn _om -> ( A e. ran E <-> E. a e. _om ( E ` a ) = A ) ) |
7 |
5 6
|
ax-mp |
|- ( A e. ran E <-> E. a e. _om ( E ` a ) = A ) |
8 |
|
eqcom |
|- ( ( E ` a ) = A <-> A = ( E ` a ) ) |
9 |
1
|
fin1a2lem3 |
|- ( a e. _om -> ( E ` a ) = ( 2o .o a ) ) |
10 |
9
|
eqeq2d |
|- ( a e. _om -> ( A = ( E ` a ) <-> A = ( 2o .o a ) ) ) |
11 |
8 10
|
syl5bb |
|- ( a e. _om -> ( ( E ` a ) = A <-> A = ( 2o .o a ) ) ) |
12 |
11
|
rexbiia |
|- ( E. a e. _om ( E ` a ) = A <-> E. a e. _om A = ( 2o .o a ) ) |
13 |
7 12
|
bitri |
|- ( A e. ran E <-> E. a e. _om A = ( 2o .o a ) ) |
14 |
|
fvelrnb |
|- ( E Fn _om -> ( suc A e. ran E <-> E. a e. _om ( E ` a ) = suc A ) ) |
15 |
5 14
|
ax-mp |
|- ( suc A e. ran E <-> E. a e. _om ( E ` a ) = suc A ) |
16 |
|
eqcom |
|- ( ( E ` a ) = suc A <-> suc A = ( E ` a ) ) |
17 |
9
|
eqeq2d |
|- ( a e. _om -> ( suc A = ( E ` a ) <-> suc A = ( 2o .o a ) ) ) |
18 |
16 17
|
syl5bb |
|- ( a e. _om -> ( ( E ` a ) = suc A <-> suc A = ( 2o .o a ) ) ) |
19 |
18
|
rexbiia |
|- ( E. a e. _om ( E ` a ) = suc A <-> E. a e. _om suc A = ( 2o .o a ) ) |
20 |
15 19
|
bitri |
|- ( suc A e. ran E <-> E. a e. _om suc A = ( 2o .o a ) ) |
21 |
20
|
notbii |
|- ( -. suc A e. ran E <-> -. E. a e. _om suc A = ( 2o .o a ) ) |
22 |
2 13 21
|
3bitr4g |
|- ( A e. _om -> ( A e. ran E <-> -. suc A e. ran E ) ) |