Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
|- E = ( x e. _om |-> ( 2o .o x ) ) |
2 |
|
fin1a2lem.aa |
|- S = ( x e. On |-> suc x ) |
3 |
2
|
fin1a2lem2 |
|- S : On -1-1-> On |
4 |
1
|
fin1a2lem4 |
|- E : _om -1-1-> _om |
5 |
|
f1f |
|- ( E : _om -1-1-> _om -> E : _om --> _om ) |
6 |
|
frn |
|- ( E : _om --> _om -> ran E C_ _om ) |
7 |
|
omsson |
|- _om C_ On |
8 |
6 7
|
sstrdi |
|- ( E : _om --> _om -> ran E C_ On ) |
9 |
4 5 8
|
mp2b |
|- ran E C_ On |
10 |
|
f1ores |
|- ( ( S : On -1-1-> On /\ ran E C_ On ) -> ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) ) |
11 |
3 9 10
|
mp2an |
|- ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) |
12 |
9
|
sseli |
|- ( b e. ran E -> b e. On ) |
13 |
2
|
fin1a2lem1 |
|- ( b e. On -> ( S ` b ) = suc b ) |
14 |
12 13
|
syl |
|- ( b e. ran E -> ( S ` b ) = suc b ) |
15 |
14
|
eqeq1d |
|- ( b e. ran E -> ( ( S ` b ) = a <-> suc b = a ) ) |
16 |
15
|
rexbiia |
|- ( E. b e. ran E ( S ` b ) = a <-> E. b e. ran E suc b = a ) |
17 |
4 5 6
|
mp2b |
|- ran E C_ _om |
18 |
17
|
sseli |
|- ( b e. ran E -> b e. _om ) |
19 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
20 |
18 19
|
syl |
|- ( b e. ran E -> suc b e. _om ) |
21 |
1
|
fin1a2lem5 |
|- ( b e. _om -> ( b e. ran E <-> -. suc b e. ran E ) ) |
22 |
21
|
biimpd |
|- ( b e. _om -> ( b e. ran E -> -. suc b e. ran E ) ) |
23 |
18 22
|
mpcom |
|- ( b e. ran E -> -. suc b e. ran E ) |
24 |
20 23
|
jca |
|- ( b e. ran E -> ( suc b e. _om /\ -. suc b e. ran E ) ) |
25 |
|
eleq1 |
|- ( suc b = a -> ( suc b e. _om <-> a e. _om ) ) |
26 |
|
eleq1 |
|- ( suc b = a -> ( suc b e. ran E <-> a e. ran E ) ) |
27 |
26
|
notbid |
|- ( suc b = a -> ( -. suc b e. ran E <-> -. a e. ran E ) ) |
28 |
25 27
|
anbi12d |
|- ( suc b = a -> ( ( suc b e. _om /\ -. suc b e. ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) ) |
29 |
24 28
|
syl5ibcom |
|- ( b e. ran E -> ( suc b = a -> ( a e. _om /\ -. a e. ran E ) ) ) |
30 |
29
|
rexlimiv |
|- ( E. b e. ran E suc b = a -> ( a e. _om /\ -. a e. ran E ) ) |
31 |
|
peano1 |
|- (/) e. _om |
32 |
1
|
fin1a2lem3 |
|- ( (/) e. _om -> ( E ` (/) ) = ( 2o .o (/) ) ) |
33 |
31 32
|
ax-mp |
|- ( E ` (/) ) = ( 2o .o (/) ) |
34 |
|
2on |
|- 2o e. On |
35 |
|
om0 |
|- ( 2o e. On -> ( 2o .o (/) ) = (/) ) |
36 |
34 35
|
ax-mp |
|- ( 2o .o (/) ) = (/) |
37 |
33 36
|
eqtri |
|- ( E ` (/) ) = (/) |
38 |
|
f1fun |
|- ( E : _om -1-1-> _om -> Fun E ) |
39 |
4 38
|
ax-mp |
|- Fun E |
40 |
|
f1dm |
|- ( E : _om -1-1-> _om -> dom E = _om ) |
41 |
4 40
|
ax-mp |
|- dom E = _om |
42 |
31 41
|
eleqtrri |
|- (/) e. dom E |
43 |
|
fvelrn |
|- ( ( Fun E /\ (/) e. dom E ) -> ( E ` (/) ) e. ran E ) |
44 |
39 42 43
|
mp2an |
|- ( E ` (/) ) e. ran E |
45 |
37 44
|
eqeltrri |
|- (/) e. ran E |
46 |
|
eleq1 |
|- ( a = (/) -> ( a e. ran E <-> (/) e. ran E ) ) |
47 |
45 46
|
mpbiri |
|- ( a = (/) -> a e. ran E ) |
48 |
47
|
necon3bi |
|- ( -. a e. ran E -> a =/= (/) ) |
49 |
|
nnsuc |
|- ( ( a e. _om /\ a =/= (/) ) -> E. b e. _om a = suc b ) |
50 |
48 49
|
sylan2 |
|- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. _om a = suc b ) |
51 |
|
eleq1 |
|- ( a = suc b -> ( a e. _om <-> suc b e. _om ) ) |
52 |
|
eleq1 |
|- ( a = suc b -> ( a e. ran E <-> suc b e. ran E ) ) |
53 |
52
|
notbid |
|- ( a = suc b -> ( -. a e. ran E <-> -. suc b e. ran E ) ) |
54 |
51 53
|
anbi12d |
|- ( a = suc b -> ( ( a e. _om /\ -. a e. ran E ) <-> ( suc b e. _om /\ -. suc b e. ran E ) ) ) |
55 |
54
|
anbi1d |
|- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) <-> ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) ) ) |
56 |
|
simplr |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> -. suc b e. ran E ) |
57 |
21
|
adantl |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> ( b e. ran E <-> -. suc b e. ran E ) ) |
58 |
56 57
|
mpbird |
|- ( ( ( suc b e. _om /\ -. suc b e. ran E ) /\ b e. _om ) -> b e. ran E ) |
59 |
55 58
|
syl6bi |
|- ( a = suc b -> ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> b e. ran E ) ) |
60 |
59
|
com12 |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ b e. _om ) -> ( a = suc b -> b e. ran E ) ) |
61 |
60
|
impr |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> b e. ran E ) |
62 |
|
simprr |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> a = suc b ) |
63 |
62
|
eqcomd |
|- ( ( ( a e. _om /\ -. a e. ran E ) /\ ( b e. _om /\ a = suc b ) ) -> suc b = a ) |
64 |
50 61 63
|
reximssdv |
|- ( ( a e. _om /\ -. a e. ran E ) -> E. b e. ran E suc b = a ) |
65 |
30 64
|
impbii |
|- ( E. b e. ran E suc b = a <-> ( a e. _om /\ -. a e. ran E ) ) |
66 |
16 65
|
bitri |
|- ( E. b e. ran E ( S ` b ) = a <-> ( a e. _om /\ -. a e. ran E ) ) |
67 |
|
f1fn |
|- ( S : On -1-1-> On -> S Fn On ) |
68 |
3 67
|
ax-mp |
|- S Fn On |
69 |
|
fvelimab |
|- ( ( S Fn On /\ ran E C_ On ) -> ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) ) |
70 |
68 9 69
|
mp2an |
|- ( a e. ( S " ran E ) <-> E. b e. ran E ( S ` b ) = a ) |
71 |
|
eldif |
|- ( a e. ( _om \ ran E ) <-> ( a e. _om /\ -. a e. ran E ) ) |
72 |
66 70 71
|
3bitr4i |
|- ( a e. ( S " ran E ) <-> a e. ( _om \ ran E ) ) |
73 |
72
|
eqriv |
|- ( S " ran E ) = ( _om \ ran E ) |
74 |
|
f1oeq3 |
|- ( ( S " ran E ) = ( _om \ ran E ) -> ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) ) |
75 |
73 74
|
ax-mp |
|- ( ( S |` ran E ) : ran E -1-1-onto-> ( S " ran E ) <-> ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) ) |
76 |
11 75
|
mpbi |
|- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |