Step |
Hyp |
Ref |
Expression |
1 |
|
fin1a2lem.b |
|- E = ( x e. _om |-> ( 2o .o x ) ) |
2 |
|
fin1a2lem.aa |
|- S = ( x e. On |-> suc x ) |
3 |
|
peano1 |
|- (/) e. _om |
4 |
|
ne0i |
|- ( (/) e. _om -> _om =/= (/) ) |
5 |
|
brwdomn0 |
|- ( _om =/= (/) -> ( _om ~<_* A <-> E. f f : A -onto-> _om ) ) |
6 |
3 4 5
|
mp2b |
|- ( _om ~<_* A <-> E. f f : A -onto-> _om ) |
7 |
|
vex |
|- f e. _V |
8 |
|
fof |
|- ( f : A -onto-> _om -> f : A --> _om ) |
9 |
|
dmfex |
|- ( ( f e. _V /\ f : A --> _om ) -> A e. _V ) |
10 |
7 8 9
|
sylancr |
|- ( f : A -onto-> _om -> A e. _V ) |
11 |
|
cnvimass |
|- ( `' f " ran E ) C_ dom f |
12 |
11 8
|
fssdm |
|- ( f : A -onto-> _om -> ( `' f " ran E ) C_ A ) |
13 |
10 12
|
sselpwd |
|- ( f : A -onto-> _om -> ( `' f " ran E ) e. ~P A ) |
14 |
1
|
fin1a2lem4 |
|- E : _om -1-1-> _om |
15 |
|
f1cnv |
|- ( E : _om -1-1-> _om -> `' E : ran E -1-1-onto-> _om ) |
16 |
|
f1ofo |
|- ( `' E : ran E -1-1-onto-> _om -> `' E : ran E -onto-> _om ) |
17 |
14 15 16
|
mp2b |
|- `' E : ran E -onto-> _om |
18 |
|
fofun |
|- ( `' E : ran E -onto-> _om -> Fun `' E ) |
19 |
17 18
|
ax-mp |
|- Fun `' E |
20 |
7
|
resex |
|- ( f |` ( `' f " ran E ) ) e. _V |
21 |
|
cofunexg |
|- ( ( Fun `' E /\ ( f |` ( `' f " ran E ) ) e. _V ) -> ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V ) |
22 |
19 20 21
|
mp2an |
|- ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V |
23 |
|
fofun |
|- ( f : A -onto-> _om -> Fun f ) |
24 |
|
fores |
|- ( ( Fun f /\ ( `' f " ran E ) C_ dom f ) -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) ) |
25 |
23 11 24
|
sylancl |
|- ( f : A -onto-> _om -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) ) |
26 |
|
f1f |
|- ( E : _om -1-1-> _om -> E : _om --> _om ) |
27 |
|
frn |
|- ( E : _om --> _om -> ran E C_ _om ) |
28 |
14 26 27
|
mp2b |
|- ran E C_ _om |
29 |
|
foimacnv |
|- ( ( f : A -onto-> _om /\ ran E C_ _om ) -> ( f " ( `' f " ran E ) ) = ran E ) |
30 |
28 29
|
mpan2 |
|- ( f : A -onto-> _om -> ( f " ( `' f " ran E ) ) = ran E ) |
31 |
|
foeq3 |
|- ( ( f " ( `' f " ran E ) ) = ran E -> ( ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) <-> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) ) |
32 |
30 31
|
syl |
|- ( f : A -onto-> _om -> ( ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ( f " ( `' f " ran E ) ) <-> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) ) |
33 |
25 32
|
mpbid |
|- ( f : A -onto-> _om -> ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) |
34 |
|
foco |
|- ( ( `' E : ran E -onto-> _om /\ ( f |` ( `' f " ran E ) ) : ( `' f " ran E ) -onto-> ran E ) -> ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) |
35 |
17 33 34
|
sylancr |
|- ( f : A -onto-> _om -> ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) |
36 |
|
fowdom |
|- ( ( ( `' E o. ( f |` ( `' f " ran E ) ) ) e. _V /\ ( `' E o. ( f |` ( `' f " ran E ) ) ) : ( `' f " ran E ) -onto-> _om ) -> _om ~<_* ( `' f " ran E ) ) |
37 |
22 35 36
|
sylancr |
|- ( f : A -onto-> _om -> _om ~<_* ( `' f " ran E ) ) |
38 |
7
|
cnvex |
|- `' f e. _V |
39 |
38
|
imaex |
|- ( `' f " ran E ) e. _V |
40 |
|
isfin3-2 |
|- ( ( `' f " ran E ) e. _V -> ( ( `' f " ran E ) e. Fin3 <-> -. _om ~<_* ( `' f " ran E ) ) ) |
41 |
39 40
|
ax-mp |
|- ( ( `' f " ran E ) e. Fin3 <-> -. _om ~<_* ( `' f " ran E ) ) |
42 |
41
|
con2bii |
|- ( _om ~<_* ( `' f " ran E ) <-> -. ( `' f " ran E ) e. Fin3 ) |
43 |
37 42
|
sylib |
|- ( f : A -onto-> _om -> -. ( `' f " ran E ) e. Fin3 ) |
44 |
1 2
|
fin1a2lem6 |
|- ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) |
45 |
|
f1ocnv |
|- ( ( S |` ran E ) : ran E -1-1-onto-> ( _om \ ran E ) -> `' ( S |` ran E ) : ( _om \ ran E ) -1-1-onto-> ran E ) |
46 |
|
f1ofo |
|- ( `' ( S |` ran E ) : ( _om \ ran E ) -1-1-onto-> ran E -> `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E ) |
47 |
44 45 46
|
mp2b |
|- `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E |
48 |
|
foco |
|- ( ( `' E : ran E -onto-> _om /\ `' ( S |` ran E ) : ( _om \ ran E ) -onto-> ran E ) -> ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om ) |
49 |
17 47 48
|
mp2an |
|- ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om |
50 |
|
fofun |
|- ( ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om -> Fun ( `' E o. `' ( S |` ran E ) ) ) |
51 |
49 50
|
ax-mp |
|- Fun ( `' E o. `' ( S |` ran E ) ) |
52 |
7
|
resex |
|- ( f |` ( A \ ( `' f " ran E ) ) ) e. _V |
53 |
|
cofunexg |
|- ( ( Fun ( `' E o. `' ( S |` ran E ) ) /\ ( f |` ( A \ ( `' f " ran E ) ) ) e. _V ) -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V ) |
54 |
51 52 53
|
mp2an |
|- ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V |
55 |
|
difss |
|- ( A \ ( `' f " ran E ) ) C_ A |
56 |
8
|
fdmd |
|- ( f : A -onto-> _om -> dom f = A ) |
57 |
55 56
|
sseqtrrid |
|- ( f : A -onto-> _om -> ( A \ ( `' f " ran E ) ) C_ dom f ) |
58 |
|
fores |
|- ( ( Fun f /\ ( A \ ( `' f " ran E ) ) C_ dom f ) -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) ) |
59 |
23 57 58
|
syl2anc |
|- ( f : A -onto-> _om -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) ) |
60 |
|
funcnvcnv |
|- ( Fun f -> Fun `' `' f ) |
61 |
|
imadif |
|- ( Fun `' `' f -> ( `' f " ( _om \ ran E ) ) = ( ( `' f " _om ) \ ( `' f " ran E ) ) ) |
62 |
23 60 61
|
3syl |
|- ( f : A -onto-> _om -> ( `' f " ( _om \ ran E ) ) = ( ( `' f " _om ) \ ( `' f " ran E ) ) ) |
63 |
62
|
imaeq2d |
|- ( f : A -onto-> _om -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( f " ( ( `' f " _om ) \ ( `' f " ran E ) ) ) ) |
64 |
|
difss |
|- ( _om \ ran E ) C_ _om |
65 |
|
foimacnv |
|- ( ( f : A -onto-> _om /\ ( _om \ ran E ) C_ _om ) -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( _om \ ran E ) ) |
66 |
64 65
|
mpan2 |
|- ( f : A -onto-> _om -> ( f " ( `' f " ( _om \ ran E ) ) ) = ( _om \ ran E ) ) |
67 |
|
fimacnv |
|- ( f : A --> _om -> ( `' f " _om ) = A ) |
68 |
8 67
|
syl |
|- ( f : A -onto-> _om -> ( `' f " _om ) = A ) |
69 |
68
|
difeq1d |
|- ( f : A -onto-> _om -> ( ( `' f " _om ) \ ( `' f " ran E ) ) = ( A \ ( `' f " ran E ) ) ) |
70 |
69
|
imaeq2d |
|- ( f : A -onto-> _om -> ( f " ( ( `' f " _om ) \ ( `' f " ran E ) ) ) = ( f " ( A \ ( `' f " ran E ) ) ) ) |
71 |
63 66 70
|
3eqtr3rd |
|- ( f : A -onto-> _om -> ( f " ( A \ ( `' f " ran E ) ) ) = ( _om \ ran E ) ) |
72 |
|
foeq3 |
|- ( ( f " ( A \ ( `' f " ran E ) ) ) = ( _om \ ran E ) -> ( ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) <-> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) ) |
73 |
71 72
|
syl |
|- ( f : A -onto-> _om -> ( ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( f " ( A \ ( `' f " ran E ) ) ) <-> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) ) |
74 |
59 73
|
mpbid |
|- ( f : A -onto-> _om -> ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) |
75 |
|
foco |
|- ( ( ( `' E o. `' ( S |` ran E ) ) : ( _om \ ran E ) -onto-> _om /\ ( f |` ( A \ ( `' f " ran E ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> ( _om \ ran E ) ) -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) |
76 |
49 74 75
|
sylancr |
|- ( f : A -onto-> _om -> ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) |
77 |
|
fowdom |
|- ( ( ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) e. _V /\ ( ( `' E o. `' ( S |` ran E ) ) o. ( f |` ( A \ ( `' f " ran E ) ) ) ) : ( A \ ( `' f " ran E ) ) -onto-> _om ) -> _om ~<_* ( A \ ( `' f " ran E ) ) ) |
78 |
54 76 77
|
sylancr |
|- ( f : A -onto-> _om -> _om ~<_* ( A \ ( `' f " ran E ) ) ) |
79 |
|
difexg |
|- ( A e. _V -> ( A \ ( `' f " ran E ) ) e. _V ) |
80 |
|
isfin3-2 |
|- ( ( A \ ( `' f " ran E ) ) e. _V -> ( ( A \ ( `' f " ran E ) ) e. Fin3 <-> -. _om ~<_* ( A \ ( `' f " ran E ) ) ) ) |
81 |
10 79 80
|
3syl |
|- ( f : A -onto-> _om -> ( ( A \ ( `' f " ran E ) ) e. Fin3 <-> -. _om ~<_* ( A \ ( `' f " ran E ) ) ) ) |
82 |
81
|
con2bid |
|- ( f : A -onto-> _om -> ( _om ~<_* ( A \ ( `' f " ran E ) ) <-> -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
83 |
78 82
|
mpbid |
|- ( f : A -onto-> _om -> -. ( A \ ( `' f " ran E ) ) e. Fin3 ) |
84 |
|
eleq1 |
|- ( y = ( `' f " ran E ) -> ( y e. Fin3 <-> ( `' f " ran E ) e. Fin3 ) ) |
85 |
|
difeq2 |
|- ( y = ( `' f " ran E ) -> ( A \ y ) = ( A \ ( `' f " ran E ) ) ) |
86 |
85
|
eleq1d |
|- ( y = ( `' f " ran E ) -> ( ( A \ y ) e. Fin3 <-> ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
87 |
84 86
|
orbi12d |
|- ( y = ( `' f " ran E ) -> ( ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
88 |
87
|
notbid |
|- ( y = ( `' f " ran E ) -> ( -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> -. ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
89 |
|
ioran |
|- ( -. ( ( `' f " ran E ) e. Fin3 \/ ( A \ ( `' f " ran E ) ) e. Fin3 ) <-> ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) |
90 |
88 89
|
bitrdi |
|- ( y = ( `' f " ran E ) -> ( -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) ) |
91 |
90
|
rspcev |
|- ( ( ( `' f " ran E ) e. ~P A /\ ( -. ( `' f " ran E ) e. Fin3 /\ -. ( A \ ( `' f " ran E ) ) e. Fin3 ) ) -> E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
92 |
13 43 83 91
|
syl12anc |
|- ( f : A -onto-> _om -> E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
93 |
|
rexnal |
|- ( E. y e. ~P A -. ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) <-> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
94 |
92 93
|
sylib |
|- ( f : A -onto-> _om -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
95 |
94
|
exlimiv |
|- ( E. f f : A -onto-> _om -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
96 |
6 95
|
sylbi |
|- ( _om ~<_* A -> -. A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) |
97 |
96
|
con2i |
|- ( A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) -> -. _om ~<_* A ) |
98 |
|
isfin3-2 |
|- ( A e. V -> ( A e. Fin3 <-> -. _om ~<_* A ) ) |
99 |
97 98
|
syl5ibr |
|- ( A e. V -> ( A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) -> A e. Fin3 ) ) |
100 |
99
|
imp |
|- ( ( A e. V /\ A. y e. ~P A ( y e. Fin3 \/ ( A \ y ) e. Fin3 ) ) -> A e. Fin3 ) |