Step |
Hyp |
Ref |
Expression |
1 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
2 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
3 |
1 2
|
eqsstri |
|- _om C_ Fin |
4 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
5 |
3 4
|
sselid |
|- ( A e. _om -> suc A e. Fin ) |
6 |
5
|
3ad2ant3 |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. Fin ) |
7 |
4
|
3ad2ant3 |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. _om ) |
8 |
|
breq1 |
|- ( b = c -> ( b ~<_ A <-> c ~<_ A ) ) |
9 |
8
|
elrab |
|- ( c e. { b e. X | b ~<_ A } <-> ( c e. X /\ c ~<_ A ) ) |
10 |
|
simprr |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c ~<_ A ) |
11 |
|
simpl2 |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> X C_ Fin ) |
12 |
|
simprl |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. X ) |
13 |
11 12
|
sseldd |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. Fin ) |
14 |
|
finnum |
|- ( c e. Fin -> c e. dom card ) |
15 |
13 14
|
syl |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. dom card ) |
16 |
|
simpl3 |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. _om ) |
17 |
3 16
|
sselid |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. Fin ) |
18 |
|
finnum |
|- ( A e. Fin -> A e. dom card ) |
19 |
17 18
|
syl |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. dom card ) |
20 |
|
carddom2 |
|- ( ( c e. dom card /\ A e. dom card ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) |
21 |
15 19 20
|
syl2anc |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) |
22 |
10 21
|
mpbird |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( card ` c ) C_ ( card ` A ) ) |
23 |
22
|
ex |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) C_ ( card ` A ) ) ) |
24 |
|
cardnn |
|- ( A e. _om -> ( card ` A ) = A ) |
25 |
24
|
sseq2d |
|- ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) C_ A ) ) |
26 |
|
cardon |
|- ( card ` c ) e. On |
27 |
|
nnon |
|- ( A e. _om -> A e. On ) |
28 |
|
onsssuc |
|- ( ( ( card ` c ) e. On /\ A e. On ) -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) |
29 |
26 27 28
|
sylancr |
|- ( A e. _om -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) |
30 |
25 29
|
bitrd |
|- ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) |
31 |
30
|
3ad2ant3 |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) |
32 |
23 31
|
sylibd |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) e. suc A ) ) |
33 |
9 32
|
syl5bi |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( c e. { b e. X | b ~<_ A } -> ( card ` c ) e. suc A ) ) |
34 |
|
elrabi |
|- ( c e. { b e. X | b ~<_ A } -> c e. X ) |
35 |
|
elrabi |
|- ( d e. { b e. X | b ~<_ A } -> d e. X ) |
36 |
|
ssel |
|- ( X C_ Fin -> ( c e. X -> c e. Fin ) ) |
37 |
|
ssel |
|- ( X C_ Fin -> ( d e. X -> d e. Fin ) ) |
38 |
36 37
|
anim12d |
|- ( X C_ Fin -> ( ( c e. X /\ d e. X ) -> ( c e. Fin /\ d e. Fin ) ) ) |
39 |
38
|
imp |
|- ( ( X C_ Fin /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) |
40 |
39
|
3ad2antl2 |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) |
41 |
|
sorpssi |
|- ( ( [C.] Or X /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) |
42 |
41
|
3ad2antl1 |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) |
43 |
|
finnum |
|- ( d e. Fin -> d e. dom card ) |
44 |
|
carden2 |
|- ( ( c e. dom card /\ d e. dom card ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
45 |
14 43 44
|
syl2an |
|- ( ( c e. Fin /\ d e. Fin ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
46 |
45
|
adantr |
|- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) |
47 |
|
fin23lem25 |
|- ( ( c e. Fin /\ d e. Fin /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) |
48 |
47
|
3expa |
|- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) |
49 |
48
|
biimpd |
|- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d -> c = d ) ) |
50 |
46 49
|
sylbid |
|- ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) |
51 |
40 42 50
|
syl2anc |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) |
52 |
|
fveq2 |
|- ( c = d -> ( card ` c ) = ( card ` d ) ) |
53 |
51 52
|
impbid1 |
|- ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) |
54 |
53
|
ex |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ d e. X ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) |
55 |
34 35 54
|
syl2ani |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. { b e. X | b ~<_ A } /\ d e. { b e. X | b ~<_ A } ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) |
56 |
33 55
|
dom2d |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( suc A e. _om -> { b e. X | b ~<_ A } ~<_ suc A ) ) |
57 |
7 56
|
mpd |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } ~<_ suc A ) |
58 |
|
domfi |
|- ( ( suc A e. Fin /\ { b e. X | b ~<_ A } ~<_ suc A ) -> { b e. X | b ~<_ A } e. Fin ) |
59 |
6 57 58
|
syl2anc |
|- ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } e. Fin ) |