| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onfin2 |  |-  _om = ( On i^i Fin ) | 
						
							| 2 |  | inss2 |  |-  ( On i^i Fin ) C_ Fin | 
						
							| 3 | 1 2 | eqsstri |  |-  _om C_ Fin | 
						
							| 4 |  | peano2 |  |-  ( A e. _om -> suc A e. _om ) | 
						
							| 5 | 3 4 | sselid |  |-  ( A e. _om -> suc A e. Fin ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. Fin ) | 
						
							| 7 | 4 | 3ad2ant3 |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> suc A e. _om ) | 
						
							| 8 |  | breq1 |  |-  ( b = c -> ( b ~<_ A <-> c ~<_ A ) ) | 
						
							| 9 | 8 | elrab |  |-  ( c e. { b e. X | b ~<_ A } <-> ( c e. X /\ c ~<_ A ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c ~<_ A ) | 
						
							| 11 |  | simpl2 |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> X C_ Fin ) | 
						
							| 12 |  | simprl |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. X ) | 
						
							| 13 | 11 12 | sseldd |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. Fin ) | 
						
							| 14 |  | finnum |  |-  ( c e. Fin -> c e. dom card ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> c e. dom card ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. _om ) | 
						
							| 17 | 3 16 | sselid |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. Fin ) | 
						
							| 18 |  | finnum |  |-  ( A e. Fin -> A e. dom card ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> A e. dom card ) | 
						
							| 20 |  | carddom2 |  |-  ( ( c e. dom card /\ A e. dom card ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) | 
						
							| 21 | 15 19 20 | syl2anc |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( ( card ` c ) C_ ( card ` A ) <-> c ~<_ A ) ) | 
						
							| 22 | 10 21 | mpbird |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ c ~<_ A ) ) -> ( card ` c ) C_ ( card ` A ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) C_ ( card ` A ) ) ) | 
						
							| 24 |  | cardnn |  |-  ( A e. _om -> ( card ` A ) = A ) | 
						
							| 25 | 24 | sseq2d |  |-  ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) C_ A ) ) | 
						
							| 26 |  | cardon |  |-  ( card ` c ) e. On | 
						
							| 27 |  | nnon |  |-  ( A e. _om -> A e. On ) | 
						
							| 28 |  | onsssuc |  |-  ( ( ( card ` c ) e. On /\ A e. On ) -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) | 
						
							| 29 | 26 27 28 | sylancr |  |-  ( A e. _om -> ( ( card ` c ) C_ A <-> ( card ` c ) e. suc A ) ) | 
						
							| 30 | 25 29 | bitrd |  |-  ( A e. _om -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( card ` c ) C_ ( card ` A ) <-> ( card ` c ) e. suc A ) ) | 
						
							| 32 | 23 31 | sylibd |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ c ~<_ A ) -> ( card ` c ) e. suc A ) ) | 
						
							| 33 | 9 32 | biimtrid |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( c e. { b e. X | b ~<_ A } -> ( card ` c ) e. suc A ) ) | 
						
							| 34 |  | elrabi |  |-  ( c e. { b e. X | b ~<_ A } -> c e. X ) | 
						
							| 35 |  | elrabi |  |-  ( d e. { b e. X | b ~<_ A } -> d e. X ) | 
						
							| 36 |  | ssel |  |-  ( X C_ Fin -> ( c e. X -> c e. Fin ) ) | 
						
							| 37 |  | ssel |  |-  ( X C_ Fin -> ( d e. X -> d e. Fin ) ) | 
						
							| 38 | 36 37 | anim12d |  |-  ( X C_ Fin -> ( ( c e. X /\ d e. X ) -> ( c e. Fin /\ d e. Fin ) ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( X C_ Fin /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) | 
						
							| 40 | 39 | 3ad2antl2 |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c e. Fin /\ d e. Fin ) ) | 
						
							| 41 |  | sorpssi |  |-  ( ( [C.] Or X /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) | 
						
							| 42 | 41 | 3ad2antl1 |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( c C_ d \/ d C_ c ) ) | 
						
							| 43 |  | finnum |  |-  ( d e. Fin -> d e. dom card ) | 
						
							| 44 |  | carden2 |  |-  ( ( c e. dom card /\ d e. dom card ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) | 
						
							| 45 | 14 43 44 | syl2an |  |-  ( ( c e. Fin /\ d e. Fin ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) <-> c ~~ d ) ) | 
						
							| 47 |  | fin23lem25 |  |-  ( ( c e. Fin /\ d e. Fin /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) | 
						
							| 48 | 47 | 3expa |  |-  ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d <-> c = d ) ) | 
						
							| 49 | 48 | biimpd |  |-  ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( c ~~ d -> c = d ) ) | 
						
							| 50 | 46 49 | sylbid |  |-  ( ( ( c e. Fin /\ d e. Fin ) /\ ( c C_ d \/ d C_ c ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) | 
						
							| 51 | 40 42 50 | syl2anc |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) -> c = d ) ) | 
						
							| 52 |  | fveq2 |  |-  ( c = d -> ( card ` c ) = ( card ` d ) ) | 
						
							| 53 | 51 52 | impbid1 |  |-  ( ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) /\ ( c e. X /\ d e. X ) ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. X /\ d e. X ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) | 
						
							| 55 | 34 35 54 | syl2ani |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( ( c e. { b e. X | b ~<_ A } /\ d e. { b e. X | b ~<_ A } ) -> ( ( card ` c ) = ( card ` d ) <-> c = d ) ) ) | 
						
							| 56 | 33 55 | dom2d |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> ( suc A e. _om -> { b e. X | b ~<_ A } ~<_ suc A ) ) | 
						
							| 57 | 7 56 | mpd |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } ~<_ suc A ) | 
						
							| 58 |  | domfi |  |-  ( ( suc A e. Fin /\ { b e. X | b ~<_ A } ~<_ suc A ) -> { b e. X | b ~<_ A } e. Fin ) | 
						
							| 59 | 6 57 58 | syl2anc |  |-  ( ( [C.] Or X /\ X C_ Fin /\ A e. _om ) -> { b e. X | b ~<_ A } e. Fin ) |