Metamath Proof Explorer


Theorem fin23lem12

Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of U and its intersection. First, the value of U at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
Assertion fin23lem12
|- ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )

Proof

Step Hyp Ref Expression
1 fin23lem.a
 |-  U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
2 1 seqomsuc
 |-  ( A e. _om -> ( U ` suc A ) = ( A ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) ( U ` A ) ) )
3 fvex
 |-  ( U ` A ) e. _V
4 fveq2
 |-  ( i = A -> ( t ` i ) = ( t ` A ) )
5 4 ineq1d
 |-  ( i = A -> ( ( t ` i ) i^i u ) = ( ( t ` A ) i^i u ) )
6 5 eqeq1d
 |-  ( i = A -> ( ( ( t ` i ) i^i u ) = (/) <-> ( ( t ` A ) i^i u ) = (/) ) )
7 6 5 ifbieq2d
 |-  ( i = A -> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) = if ( ( ( t ` A ) i^i u ) = (/) , u , ( ( t ` A ) i^i u ) ) )
8 ineq2
 |-  ( u = ( U ` A ) -> ( ( t ` A ) i^i u ) = ( ( t ` A ) i^i ( U ` A ) ) )
9 8 eqeq1d
 |-  ( u = ( U ` A ) -> ( ( ( t ` A ) i^i u ) = (/) <-> ( ( t ` A ) i^i ( U ` A ) ) = (/) ) )
10 id
 |-  ( u = ( U ` A ) -> u = ( U ` A ) )
11 9 10 8 ifbieq12d
 |-  ( u = ( U ` A ) -> if ( ( ( t ` A ) i^i u ) = (/) , u , ( ( t ` A ) i^i u ) ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )
12 eqid
 |-  ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) = ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) )
13 3 inex2
 |-  ( ( t ` A ) i^i ( U ` A ) ) e. _V
14 3 13 ifex
 |-  if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) e. _V
15 7 11 12 14 ovmpo
 |-  ( ( A e. _om /\ ( U ` A ) e. _V ) -> ( A ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) ( U ` A ) ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )
16 3 15 mpan2
 |-  ( A e. _om -> ( A ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) ( U ` A ) ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )
17 2 16 eqtrd
 |-  ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )