Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
1
|
fin23lem12 |
|- ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) ) |
3 |
|
sseq1 |
|- ( ( U ` A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) -> ( ( U ` A ) C_ ( U ` A ) <-> if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) ) ) |
4 |
|
sseq1 |
|- ( ( ( t ` A ) i^i ( U ` A ) ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) -> ( ( ( t ` A ) i^i ( U ` A ) ) C_ ( U ` A ) <-> if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) ) ) |
5 |
|
ssid |
|- ( U ` A ) C_ ( U ` A ) |
6 |
|
inss2 |
|- ( ( t ` A ) i^i ( U ` A ) ) C_ ( U ` A ) |
7 |
3 4 5 6
|
keephyp |
|- if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) C_ ( U ` A ) |
8 |
2 7
|
eqsstrdi |
|- ( A e. _om -> ( U ` suc A ) C_ ( U ` A ) ) |