Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
fveq2 |
|- ( a = (/) -> ( U ` a ) = ( U ` (/) ) ) |
3 |
2
|
neeq1d |
|- ( a = (/) -> ( ( U ` a ) =/= (/) <-> ( U ` (/) ) =/= (/) ) ) |
4 |
3
|
imbi2d |
|- ( a = (/) -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` (/) ) =/= (/) ) ) ) |
5 |
|
fveq2 |
|- ( a = b -> ( U ` a ) = ( U ` b ) ) |
6 |
5
|
neeq1d |
|- ( a = b -> ( ( U ` a ) =/= (/) <-> ( U ` b ) =/= (/) ) ) |
7 |
6
|
imbi2d |
|- ( a = b -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` b ) =/= (/) ) ) ) |
8 |
|
fveq2 |
|- ( a = suc b -> ( U ` a ) = ( U ` suc b ) ) |
9 |
8
|
neeq1d |
|- ( a = suc b -> ( ( U ` a ) =/= (/) <-> ( U ` suc b ) =/= (/) ) ) |
10 |
9
|
imbi2d |
|- ( a = suc b -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` suc b ) =/= (/) ) ) ) |
11 |
|
fveq2 |
|- ( a = A -> ( U ` a ) = ( U ` A ) ) |
12 |
11
|
neeq1d |
|- ( a = A -> ( ( U ` a ) =/= (/) <-> ( U ` A ) =/= (/) ) ) |
13 |
12
|
imbi2d |
|- ( a = A -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` A ) =/= (/) ) ) ) |
14 |
|
vex |
|- t e. _V |
15 |
14
|
rnex |
|- ran t e. _V |
16 |
15
|
uniex |
|- U. ran t e. _V |
17 |
1
|
seqom0g |
|- ( U. ran t e. _V -> ( U ` (/) ) = U. ran t ) |
18 |
16 17
|
mp1i |
|- ( U. ran t =/= (/) -> ( U ` (/) ) = U. ran t ) |
19 |
|
id |
|- ( U. ran t =/= (/) -> U. ran t =/= (/) ) |
20 |
18 19
|
eqnetrd |
|- ( U. ran t =/= (/) -> ( U ` (/) ) =/= (/) ) |
21 |
1
|
fin23lem12 |
|- ( b e. _om -> ( U ` suc b ) = if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) ) |
22 |
21
|
adantr |
|- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> ( U ` suc b ) = if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) ) |
23 |
|
iftrue |
|- ( ( ( t ` b ) i^i ( U ` b ) ) = (/) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( U ` b ) ) |
24 |
23
|
adantr |
|- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( U ` b ) ) |
25 |
|
simprr |
|- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> ( U ` b ) =/= (/) ) |
26 |
24 25
|
eqnetrd |
|- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
27 |
|
iffalse |
|- ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( ( t ` b ) i^i ( U ` b ) ) ) |
28 |
27
|
adantr |
|- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( ( t ` b ) i^i ( U ` b ) ) ) |
29 |
|
neqne |
|- ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) -> ( ( t ` b ) i^i ( U ` b ) ) =/= (/) ) |
30 |
29
|
adantr |
|- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> ( ( t ` b ) i^i ( U ` b ) ) =/= (/) ) |
31 |
28 30
|
eqnetrd |
|- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
32 |
26 31
|
pm2.61ian |
|- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
33 |
22 32
|
eqnetrd |
|- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> ( U ` suc b ) =/= (/) ) |
34 |
33
|
ex |
|- ( b e. _om -> ( ( U ` b ) =/= (/) -> ( U ` suc b ) =/= (/) ) ) |
35 |
34
|
imim2d |
|- ( b e. _om -> ( ( U. ran t =/= (/) -> ( U ` b ) =/= (/) ) -> ( U. ran t =/= (/) -> ( U ` suc b ) =/= (/) ) ) ) |
36 |
4 7 10 13 20 35
|
finds |
|- ( A e. _om -> ( U. ran t =/= (/) -> ( U ` A ) =/= (/) ) ) |
37 |
36
|
imp |
|- ( ( A e. _om /\ U. ran t =/= (/) ) -> ( U ` A ) =/= (/) ) |