Metamath Proof Explorer


Theorem fin23lem16

Description: Lemma for fin23 . U ranges over the original set; in particular ran U is a set, although we do not assume here that U is. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
Assertion fin23lem16
|- U. ran U = U. ran t

Proof

Step Hyp Ref Expression
1 fin23lem.a
 |-  U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
2 unissb
 |-  ( U. ran U C_ U. ran t <-> A. a e. ran U a C_ U. ran t )
3 1 fnseqom
 |-  U Fn _om
4 fvelrnb
 |-  ( U Fn _om -> ( a e. ran U <-> E. b e. _om ( U ` b ) = a ) )
5 3 4 ax-mp
 |-  ( a e. ran U <-> E. b e. _om ( U ` b ) = a )
6 peano1
 |-  (/) e. _om
7 0ss
 |-  (/) C_ b
8 1 fin23lem15
 |-  ( ( ( b e. _om /\ (/) e. _om ) /\ (/) C_ b ) -> ( U ` b ) C_ ( U ` (/) ) )
9 7 8 mpan2
 |-  ( ( b e. _om /\ (/) e. _om ) -> ( U ` b ) C_ ( U ` (/) ) )
10 6 9 mpan2
 |-  ( b e. _om -> ( U ` b ) C_ ( U ` (/) ) )
11 vex
 |-  t e. _V
12 11 rnex
 |-  ran t e. _V
13 12 uniex
 |-  U. ran t e. _V
14 1 seqom0g
 |-  ( U. ran t e. _V -> ( U ` (/) ) = U. ran t )
15 13 14 ax-mp
 |-  ( U ` (/) ) = U. ran t
16 10 15 sseqtrdi
 |-  ( b e. _om -> ( U ` b ) C_ U. ran t )
17 sseq1
 |-  ( ( U ` b ) = a -> ( ( U ` b ) C_ U. ran t <-> a C_ U. ran t ) )
18 16 17 syl5ibcom
 |-  ( b e. _om -> ( ( U ` b ) = a -> a C_ U. ran t ) )
19 18 rexlimiv
 |-  ( E. b e. _om ( U ` b ) = a -> a C_ U. ran t )
20 5 19 sylbi
 |-  ( a e. ran U -> a C_ U. ran t )
21 2 20 mprgbir
 |-  U. ran U C_ U. ran t
22 fnfvelrn
 |-  ( ( U Fn _om /\ (/) e. _om ) -> ( U ` (/) ) e. ran U )
23 3 6 22 mp2an
 |-  ( U ` (/) ) e. ran U
24 15 23 eqeltrri
 |-  U. ran t e. ran U
25 elssuni
 |-  ( U. ran t e. ran U -> U. ran t C_ U. ran U )
26 24 25 ax-mp
 |-  U. ran t C_ U. ran U
27 21 26 eqssi
 |-  U. ran U = U. ran t