Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
unissb |
|- ( U. ran U C_ U. ran t <-> A. a e. ran U a C_ U. ran t ) |
3 |
1
|
fnseqom |
|- U Fn _om |
4 |
|
fvelrnb |
|- ( U Fn _om -> ( a e. ran U <-> E. b e. _om ( U ` b ) = a ) ) |
5 |
3 4
|
ax-mp |
|- ( a e. ran U <-> E. b e. _om ( U ` b ) = a ) |
6 |
|
peano1 |
|- (/) e. _om |
7 |
|
0ss |
|- (/) C_ b |
8 |
1
|
fin23lem15 |
|- ( ( ( b e. _om /\ (/) e. _om ) /\ (/) C_ b ) -> ( U ` b ) C_ ( U ` (/) ) ) |
9 |
7 8
|
mpan2 |
|- ( ( b e. _om /\ (/) e. _om ) -> ( U ` b ) C_ ( U ` (/) ) ) |
10 |
6 9
|
mpan2 |
|- ( b e. _om -> ( U ` b ) C_ ( U ` (/) ) ) |
11 |
|
vex |
|- t e. _V |
12 |
11
|
rnex |
|- ran t e. _V |
13 |
12
|
uniex |
|- U. ran t e. _V |
14 |
1
|
seqom0g |
|- ( U. ran t e. _V -> ( U ` (/) ) = U. ran t ) |
15 |
13 14
|
ax-mp |
|- ( U ` (/) ) = U. ran t |
16 |
10 15
|
sseqtrdi |
|- ( b e. _om -> ( U ` b ) C_ U. ran t ) |
17 |
|
sseq1 |
|- ( ( U ` b ) = a -> ( ( U ` b ) C_ U. ran t <-> a C_ U. ran t ) ) |
18 |
16 17
|
syl5ibcom |
|- ( b e. _om -> ( ( U ` b ) = a -> a C_ U. ran t ) ) |
19 |
18
|
rexlimiv |
|- ( E. b e. _om ( U ` b ) = a -> a C_ U. ran t ) |
20 |
5 19
|
sylbi |
|- ( a e. ran U -> a C_ U. ran t ) |
21 |
2 20
|
mprgbir |
|- U. ran U C_ U. ran t |
22 |
|
fnfvelrn |
|- ( ( U Fn _om /\ (/) e. _om ) -> ( U ` (/) ) e. ran U ) |
23 |
3 6 22
|
mp2an |
|- ( U ` (/) ) e. ran U |
24 |
15 23
|
eqeltrri |
|- U. ran t e. ran U |
25 |
|
elssuni |
|- ( U. ran t e. ran U -> U. ran t C_ U. ran U ) |
26 |
24 25
|
ax-mp |
|- U. ran t C_ U. ran U |
27 |
21 26
|
eqssi |
|- U. ran U = U. ran t |