Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
1
|
fin23lem12 |
|- ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) ) |
3 |
|
eqif |
|- ( ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) <-> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) ) |
4 |
2 3
|
sylib |
|- ( A e. _om -> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) ) |
5 |
|
incom |
|- ( ( U ` suc A ) i^i ( t ` A ) ) = ( ( t ` A ) i^i ( U ` suc A ) ) |
6 |
|
ineq2 |
|- ( ( U ` suc A ) = ( U ` A ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = ( ( t ` A ) i^i ( U ` A ) ) ) |
7 |
6
|
eqeq1d |
|- ( ( U ` suc A ) = ( U ` A ) -> ( ( ( t ` A ) i^i ( U ` suc A ) ) = (/) <-> ( ( t ` A ) i^i ( U ` A ) ) = (/) ) ) |
8 |
7
|
biimparc |
|- ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = (/) ) |
9 |
5 8
|
eqtrid |
|- ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) |
10 |
|
inss1 |
|- ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A ) |
11 |
|
sseq1 |
|- ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( ( U ` suc A ) C_ ( t ` A ) <-> ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A ) ) ) |
12 |
10 11
|
mpbiri |
|- ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( U ` suc A ) C_ ( t ` A ) ) |
13 |
12
|
adantl |
|- ( ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) -> ( U ` suc A ) C_ ( t ` A ) ) |
14 |
9 13
|
orim12i |
|- ( ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) ) |
15 |
4 14
|
syl |
|- ( A e. _om -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) ) |
16 |
15
|
orcomd |
|- ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) ) |