Metamath Proof Explorer


Theorem fin23lem19

Description: Lemma for fin23 . The first set in U to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
Assertion fin23lem19
|- ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) )

Proof

Step Hyp Ref Expression
1 fin23lem.a
 |-  U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )
2 1 fin23lem12
 |-  ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) )
3 eqif
 |-  ( ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) <-> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) )
4 2 3 sylib
 |-  ( A e. _om -> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) )
5 incom
 |-  ( ( U ` suc A ) i^i ( t ` A ) ) = ( ( t ` A ) i^i ( U ` suc A ) )
6 ineq2
 |-  ( ( U ` suc A ) = ( U ` A ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = ( ( t ` A ) i^i ( U ` A ) ) )
7 6 eqeq1d
 |-  ( ( U ` suc A ) = ( U ` A ) -> ( ( ( t ` A ) i^i ( U ` suc A ) ) = (/) <-> ( ( t ` A ) i^i ( U ` A ) ) = (/) ) )
8 7 biimparc
 |-  ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = (/) )
9 5 8 syl5eq
 |-  ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( U ` suc A ) i^i ( t ` A ) ) = (/) )
10 inss1
 |-  ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A )
11 sseq1
 |-  ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( ( U ` suc A ) C_ ( t ` A ) <-> ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A ) ) )
12 10 11 mpbiri
 |-  ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( U ` suc A ) C_ ( t ` A ) )
13 12 adantl
 |-  ( ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) -> ( U ` suc A ) C_ ( t ` A ) )
14 9 13 orim12i
 |-  ( ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) )
15 4 14 syl
 |-  ( A e. _om -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) )
16 15 orcomd
 |-  ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) )