| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fin23lem.a | 
							 |-  U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t )  | 
						
						
							| 2 | 
							
								1
							 | 
							fnseqom | 
							 |-  U Fn _om  | 
						
						
							| 3 | 
							
								
							 | 
							peano2 | 
							 |-  ( A e. _om -> suc A e. _om )  | 
						
						
							| 4 | 
							
								
							 | 
							fnfvelrn | 
							 |-  ( ( U Fn _om /\ suc A e. _om ) -> ( U ` suc A ) e. ran U )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancr | 
							 |-  ( A e. _om -> ( U ` suc A ) e. ran U )  | 
						
						
							| 6 | 
							
								
							 | 
							intss1 | 
							 |-  ( ( U ` suc A ) e. ran U -> |^| ran U C_ ( U ` suc A ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( A e. _om -> |^| ran U C_ ( U ` suc A ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							fin23lem19 | 
							 |-  ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							sstr2 | 
							 |-  ( |^| ran U C_ ( U ` suc A ) -> ( ( U ` suc A ) C_ ( t ` A ) -> |^| ran U C_ ( t ` A ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ssdisj | 
							 |-  ( ( |^| ran U C_ ( U ` suc A ) /\ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) -> ( |^| ran U i^i ( t ` A ) ) = (/) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							 |-  ( |^| ran U C_ ( U ` suc A ) -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) -> ( |^| ran U i^i ( t ` A ) ) = (/) ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							orim12d | 
							 |-  ( |^| ran U C_ ( U ` suc A ) -> ( ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) -> ( |^| ran U C_ ( t ` A ) \/ ( |^| ran U i^i ( t ` A ) ) = (/) ) ) )  | 
						
						
							| 13 | 
							
								7 8 12
							 | 
							sylc | 
							 |-  ( A e. _om -> ( |^| ran U C_ ( t ` A ) \/ ( |^| ran U i^i ( t ` A ) ) = (/) ) )  |