Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
3 |
1 2
|
fin23lem17 |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U e. ran U ) |
4 |
1
|
fnseqom |
|- U Fn _om |
5 |
|
fvelrnb |
|- ( U Fn _om -> ( |^| ran U e. ran U <-> E. a e. _om ( U ` a ) = |^| ran U ) ) |
6 |
4 5
|
ax-mp |
|- ( |^| ran U e. ran U <-> E. a e. _om ( U ` a ) = |^| ran U ) |
7 |
|
id |
|- ( a e. _om -> a e. _om ) |
8 |
|
vex |
|- t e. _V |
9 |
|
f1f1orn |
|- ( t : _om -1-1-> V -> t : _om -1-1-onto-> ran t ) |
10 |
|
f1oen3g |
|- ( ( t e. _V /\ t : _om -1-1-onto-> ran t ) -> _om ~~ ran t ) |
11 |
8 9 10
|
sylancr |
|- ( t : _om -1-1-> V -> _om ~~ ran t ) |
12 |
|
ominf |
|- -. _om e. Fin |
13 |
|
ssdif0 |
|- ( ran t C_ { (/) } <-> ( ran t \ { (/) } ) = (/) ) |
14 |
|
snfi |
|- { (/) } e. Fin |
15 |
|
ssfi |
|- ( ( { (/) } e. Fin /\ ran t C_ { (/) } ) -> ran t e. Fin ) |
16 |
14 15
|
mpan |
|- ( ran t C_ { (/) } -> ran t e. Fin ) |
17 |
|
enfi |
|- ( _om ~~ ran t -> ( _om e. Fin <-> ran t e. Fin ) ) |
18 |
16 17
|
syl5ibr |
|- ( _om ~~ ran t -> ( ran t C_ { (/) } -> _om e. Fin ) ) |
19 |
13 18
|
syl5bir |
|- ( _om ~~ ran t -> ( ( ran t \ { (/) } ) = (/) -> _om e. Fin ) ) |
20 |
19
|
necon3bd |
|- ( _om ~~ ran t -> ( -. _om e. Fin -> ( ran t \ { (/) } ) =/= (/) ) ) |
21 |
11 12 20
|
mpisyl |
|- ( t : _om -1-1-> V -> ( ran t \ { (/) } ) =/= (/) ) |
22 |
|
n0 |
|- ( ( ran t \ { (/) } ) =/= (/) <-> E. a a e. ( ran t \ { (/) } ) ) |
23 |
|
eldifsn |
|- ( a e. ( ran t \ { (/) } ) <-> ( a e. ran t /\ a =/= (/) ) ) |
24 |
|
elssuni |
|- ( a e. ran t -> a C_ U. ran t ) |
25 |
|
ssn0 |
|- ( ( a C_ U. ran t /\ a =/= (/) ) -> U. ran t =/= (/) ) |
26 |
24 25
|
sylan |
|- ( ( a e. ran t /\ a =/= (/) ) -> U. ran t =/= (/) ) |
27 |
23 26
|
sylbi |
|- ( a e. ( ran t \ { (/) } ) -> U. ran t =/= (/) ) |
28 |
27
|
exlimiv |
|- ( E. a a e. ( ran t \ { (/) } ) -> U. ran t =/= (/) ) |
29 |
22 28
|
sylbi |
|- ( ( ran t \ { (/) } ) =/= (/) -> U. ran t =/= (/) ) |
30 |
21 29
|
syl |
|- ( t : _om -1-1-> V -> U. ran t =/= (/) ) |
31 |
1
|
fin23lem14 |
|- ( ( a e. _om /\ U. ran t =/= (/) ) -> ( U ` a ) =/= (/) ) |
32 |
7 30 31
|
syl2anr |
|- ( ( t : _om -1-1-> V /\ a e. _om ) -> ( U ` a ) =/= (/) ) |
33 |
|
neeq1 |
|- ( ( U ` a ) = |^| ran U -> ( ( U ` a ) =/= (/) <-> |^| ran U =/= (/) ) ) |
34 |
32 33
|
syl5ibcom |
|- ( ( t : _om -1-1-> V /\ a e. _om ) -> ( ( U ` a ) = |^| ran U -> |^| ran U =/= (/) ) ) |
35 |
34
|
rexlimdva |
|- ( t : _om -1-1-> V -> ( E. a e. _om ( U ` a ) = |^| ran U -> |^| ran U =/= (/) ) ) |
36 |
6 35
|
syl5bi |
|- ( t : _om -1-1-> V -> ( |^| ran U e. ran U -> |^| ran U =/= (/) ) ) |
37 |
36
|
adantl |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( |^| ran U e. ran U -> |^| ran U =/= (/) ) ) |
38 |
3 37
|
mpd |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U =/= (/) ) |