Step |
Hyp |
Ref |
Expression |
1 |
|
dfpss2 |
|- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
2 |
|
php3 |
|- ( ( B e. Fin /\ A C. B ) -> A ~< B ) |
3 |
|
sdomnen |
|- ( A ~< B -> -. A ~~ B ) |
4 |
2 3
|
syl |
|- ( ( B e. Fin /\ A C. B ) -> -. A ~~ B ) |
5 |
4
|
ex |
|- ( B e. Fin -> ( A C. B -> -. A ~~ B ) ) |
6 |
1 5
|
syl5bir |
|- ( B e. Fin -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) |
7 |
6
|
adantl |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) |
8 |
7
|
expd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A C_ B -> ( -. A = B -> -. A ~~ B ) ) ) |
9 |
|
dfpss2 |
|- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
10 |
|
eqcom |
|- ( B = A <-> A = B ) |
11 |
10
|
notbii |
|- ( -. B = A <-> -. A = B ) |
12 |
11
|
anbi2i |
|- ( ( B C_ A /\ -. B = A ) <-> ( B C_ A /\ -. A = B ) ) |
13 |
9 12
|
bitri |
|- ( B C. A <-> ( B C_ A /\ -. A = B ) ) |
14 |
|
php3 |
|- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
15 |
|
sdomnen |
|- ( B ~< A -> -. B ~~ A ) |
16 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
17 |
15 16
|
nsyl |
|- ( B ~< A -> -. A ~~ B ) |
18 |
14 17
|
syl |
|- ( ( A e. Fin /\ B C. A ) -> -. A ~~ B ) |
19 |
18
|
ex |
|- ( A e. Fin -> ( B C. A -> -. A ~~ B ) ) |
20 |
13 19
|
syl5bir |
|- ( A e. Fin -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) |
21 |
20
|
adantr |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) |
22 |
21
|
expd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( B C_ A -> ( -. A = B -> -. A ~~ B ) ) ) |
23 |
8 22
|
jaod |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B \/ B C_ A ) -> ( -. A = B -> -. A ~~ B ) ) ) |
24 |
23
|
3impia |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A = B -> -. A ~~ B ) ) |
25 |
24
|
con4d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B -> A = B ) ) |
26 |
|
eqeng |
|- ( A e. Fin -> ( A = B -> A ~~ B ) ) |
27 |
26
|
3ad2ant1 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A = B -> A ~~ B ) ) |
28 |
25 27
|
impbid |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B <-> A = B ) ) |