| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfpss2 |  |-  ( A C. B <-> ( A C_ B /\ -. A = B ) ) | 
						
							| 2 |  | php3 |  |-  ( ( B e. Fin /\ A C. B ) -> A ~< B ) | 
						
							| 3 |  | sdomnen |  |-  ( A ~< B -> -. A ~~ B ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( B e. Fin /\ A C. B ) -> -. A ~~ B ) | 
						
							| 5 | 4 | ex |  |-  ( B e. Fin -> ( A C. B -> -. A ~~ B ) ) | 
						
							| 6 | 1 5 | biimtrrid |  |-  ( B e. Fin -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) | 
						
							| 8 | 7 | expd |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( A C_ B -> ( -. A = B -> -. A ~~ B ) ) ) | 
						
							| 9 |  | dfpss2 |  |-  ( B C. A <-> ( B C_ A /\ -. B = A ) ) | 
						
							| 10 |  | eqcom |  |-  ( B = A <-> A = B ) | 
						
							| 11 | 10 | notbii |  |-  ( -. B = A <-> -. A = B ) | 
						
							| 12 | 11 | anbi2i |  |-  ( ( B C_ A /\ -. B = A ) <-> ( B C_ A /\ -. A = B ) ) | 
						
							| 13 | 9 12 | bitri |  |-  ( B C. A <-> ( B C_ A /\ -. A = B ) ) | 
						
							| 14 |  | php3 |  |-  ( ( A e. Fin /\ B C. A ) -> B ~< A ) | 
						
							| 15 |  | sdomnen |  |-  ( B ~< A -> -. B ~~ A ) | 
						
							| 16 |  | ensym |  |-  ( A ~~ B -> B ~~ A ) | 
						
							| 17 | 15 16 | nsyl |  |-  ( B ~< A -> -. A ~~ B ) | 
						
							| 18 | 14 17 | syl |  |-  ( ( A e. Fin /\ B C. A ) -> -. A ~~ B ) | 
						
							| 19 | 18 | ex |  |-  ( A e. Fin -> ( B C. A -> -. A ~~ B ) ) | 
						
							| 20 | 13 19 | biimtrrid |  |-  ( A e. Fin -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) | 
						
							| 22 | 21 | expd |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( B C_ A -> ( -. A = B -> -. A ~~ B ) ) ) | 
						
							| 23 | 8 22 | jaod |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B \/ B C_ A ) -> ( -. A = B -> -. A ~~ B ) ) ) | 
						
							| 24 | 23 | 3impia |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A = B -> -. A ~~ B ) ) | 
						
							| 25 | 24 | con4d |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B -> A = B ) ) | 
						
							| 26 |  | eqeng |  |-  ( A e. Fin -> ( A = B -> A ~~ B ) ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A = B -> A ~~ B ) ) | 
						
							| 28 | 25 27 | impbid |  |-  ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B <-> A = B ) ) |