Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( i = (/) -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ (/) ) ) |
2 |
1
|
rexbidv |
|- ( i = (/) -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ (/) ) ) |
3 |
|
breq2 |
|- ( i = a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ a ) ) |
4 |
3
|
rexbidv |
|- ( i = a -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ a ) ) |
5 |
|
breq2 |
|- ( i = suc a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ suc a ) ) |
6 |
5
|
rexbidv |
|- ( i = suc a -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ suc a ) ) |
7 |
|
ordom |
|- Ord _om |
8 |
|
simpl |
|- ( ( S C_ _om /\ -. S e. Fin ) -> S C_ _om ) |
9 |
|
0fin |
|- (/) e. Fin |
10 |
|
eleq1 |
|- ( S = (/) -> ( S e. Fin <-> (/) e. Fin ) ) |
11 |
9 10
|
mpbiri |
|- ( S = (/) -> S e. Fin ) |
12 |
11
|
necon3bi |
|- ( -. S e. Fin -> S =/= (/) ) |
13 |
12
|
adantl |
|- ( ( S C_ _om /\ -. S e. Fin ) -> S =/= (/) ) |
14 |
|
tz7.5 |
|- ( ( Ord _om /\ S C_ _om /\ S =/= (/) ) -> E. j e. S ( S i^i j ) = (/) ) |
15 |
7 8 13 14
|
mp3an2i |
|- ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( S i^i j ) = (/) ) |
16 |
|
en0 |
|- ( ( j i^i S ) ~~ (/) <-> ( j i^i S ) = (/) ) |
17 |
|
incom |
|- ( j i^i S ) = ( S i^i j ) |
18 |
17
|
eqeq1i |
|- ( ( j i^i S ) = (/) <-> ( S i^i j ) = (/) ) |
19 |
16 18
|
bitri |
|- ( ( j i^i S ) ~~ (/) <-> ( S i^i j ) = (/) ) |
20 |
19
|
rexbii |
|- ( E. j e. S ( j i^i S ) ~~ (/) <-> E. j e. S ( S i^i j ) = (/) ) |
21 |
15 20
|
sylibr |
|- ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( j i^i S ) ~~ (/) ) |
22 |
|
simplrl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> S C_ _om ) |
23 |
|
omsson |
|- _om C_ On |
24 |
22 23
|
sstrdi |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> S C_ On ) |
25 |
24
|
ssdifssd |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( S \ suc j ) C_ On ) |
26 |
|
simplr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> -. S e. Fin ) |
27 |
|
ssel2 |
|- ( ( S C_ _om /\ j e. S ) -> j e. _om ) |
28 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
29 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
30 |
28 29
|
eqsstri |
|- _om C_ Fin |
31 |
|
peano2 |
|- ( j e. _om -> suc j e. _om ) |
32 |
30 31
|
sselid |
|- ( j e. _om -> suc j e. Fin ) |
33 |
27 32
|
syl |
|- ( ( S C_ _om /\ j e. S ) -> suc j e. Fin ) |
34 |
33
|
adantlr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> suc j e. Fin ) |
35 |
|
ssfi |
|- ( ( suc j e. Fin /\ S C_ suc j ) -> S e. Fin ) |
36 |
35
|
ex |
|- ( suc j e. Fin -> ( S C_ suc j -> S e. Fin ) ) |
37 |
34 36
|
syl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> ( S C_ suc j -> S e. Fin ) ) |
38 |
26 37
|
mtod |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> -. S C_ suc j ) |
39 |
|
ssdif0 |
|- ( S C_ suc j <-> ( S \ suc j ) = (/) ) |
40 |
39
|
necon3bbii |
|- ( -. S C_ suc j <-> ( S \ suc j ) =/= (/) ) |
41 |
38 40
|
sylib |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> ( S \ suc j ) =/= (/) ) |
42 |
41
|
ad2ant2lr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( S \ suc j ) =/= (/) ) |
43 |
|
onint |
|- ( ( ( S \ suc j ) C_ On /\ ( S \ suc j ) =/= (/) ) -> |^| ( S \ suc j ) e. ( S \ suc j ) ) |
44 |
25 42 43
|
syl2anc |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> |^| ( S \ suc j ) e. ( S \ suc j ) ) |
45 |
44
|
eldifad |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> |^| ( S \ suc j ) e. S ) |
46 |
|
simprr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( j i^i S ) ~~ a ) |
47 |
|
en2sn |
|- ( ( j e. _V /\ a e. _V ) -> { j } ~~ { a } ) |
48 |
47
|
el2v |
|- { j } ~~ { a } |
49 |
48
|
a1i |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> { j } ~~ { a } ) |
50 |
|
simprl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> j e. S ) |
51 |
22 50
|
sseldd |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> j e. _om ) |
52 |
|
nnord |
|- ( j e. _om -> Ord j ) |
53 |
51 52
|
syl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> Ord j ) |
54 |
|
ordirr |
|- ( Ord j -> -. j e. j ) |
55 |
|
elinel1 |
|- ( j e. ( j i^i S ) -> j e. j ) |
56 |
54 55
|
nsyl |
|- ( Ord j -> -. j e. ( j i^i S ) ) |
57 |
|
disjsn |
|- ( ( ( j i^i S ) i^i { j } ) = (/) <-> -. j e. ( j i^i S ) ) |
58 |
56 57
|
sylibr |
|- ( Ord j -> ( ( j i^i S ) i^i { j } ) = (/) ) |
59 |
53 58
|
syl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) i^i { j } ) = (/) ) |
60 |
|
nnord |
|- ( a e. _om -> Ord a ) |
61 |
|
ordirr |
|- ( Ord a -> -. a e. a ) |
62 |
60 61
|
syl |
|- ( a e. _om -> -. a e. a ) |
63 |
|
disjsn |
|- ( ( a i^i { a } ) = (/) <-> -. a e. a ) |
64 |
62 63
|
sylibr |
|- ( a e. _om -> ( a i^i { a } ) = (/) ) |
65 |
64
|
ad2antrr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( a i^i { a } ) = (/) ) |
66 |
|
unen |
|- ( ( ( ( j i^i S ) ~~ a /\ { j } ~~ { a } ) /\ ( ( ( j i^i S ) i^i { j } ) = (/) /\ ( a i^i { a } ) = (/) ) ) -> ( ( j i^i S ) u. { j } ) ~~ ( a u. { a } ) ) |
67 |
46 49 59 65 66
|
syl22anc |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) u. { j } ) ~~ ( a u. { a } ) ) |
68 |
|
simprr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> b e. S ) |
69 |
|
simplrl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> S C_ _om ) |
70 |
69 23
|
sstrdi |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> S C_ On ) |
71 |
|
ordsuc |
|- ( Ord j <-> Ord suc j ) |
72 |
53 71
|
sylib |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> Ord suc j ) |
73 |
72
|
adantrr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> Ord suc j ) |
74 |
|
simp2 |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> S C_ On ) |
75 |
74
|
ssdifssd |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( S \ suc j ) C_ On ) |
76 |
|
simpl1 |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> b e. S ) |
77 |
|
simpr |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> -. b e. suc j ) |
78 |
76 77
|
eldifd |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> b e. ( S \ suc j ) ) |
79 |
78
|
ex |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( -. b e. suc j -> b e. ( S \ suc j ) ) ) |
80 |
|
onnmin |
|- ( ( ( S \ suc j ) C_ On /\ b e. ( S \ suc j ) ) -> -. b e. |^| ( S \ suc j ) ) |
81 |
75 79 80
|
syl6an |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( -. b e. suc j -> -. b e. |^| ( S \ suc j ) ) ) |
82 |
81
|
con4d |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. |^| ( S \ suc j ) -> b e. suc j ) ) |
83 |
82
|
imp |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. |^| ( S \ suc j ) ) -> b e. suc j ) |
84 |
|
simp3 |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> Ord suc j ) |
85 |
|
ordsucss |
|- ( Ord suc j -> ( b e. suc j -> suc b C_ suc j ) ) |
86 |
84 85
|
syl |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. suc j -> suc b C_ suc j ) ) |
87 |
86
|
imp |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> suc b C_ suc j ) |
88 |
87
|
sscond |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> ( S \ suc j ) C_ ( S \ suc b ) ) |
89 |
|
intss |
|- ( ( S \ suc j ) C_ ( S \ suc b ) -> |^| ( S \ suc b ) C_ |^| ( S \ suc j ) ) |
90 |
88 89
|
syl |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> |^| ( S \ suc b ) C_ |^| ( S \ suc j ) ) |
91 |
|
simpl2 |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> S C_ On ) |
92 |
|
ordelon |
|- ( ( Ord suc j /\ b e. suc j ) -> b e. On ) |
93 |
84 92
|
sylan |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. On ) |
94 |
|
onmindif |
|- ( ( S C_ On /\ b e. On ) -> b e. |^| ( S \ suc b ) ) |
95 |
91 93 94
|
syl2anc |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. |^| ( S \ suc b ) ) |
96 |
90 95
|
sseldd |
|- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. |^| ( S \ suc j ) ) |
97 |
83 96
|
impbida |
|- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. |^| ( S \ suc j ) <-> b e. suc j ) ) |
98 |
68 70 73 97
|
syl3anc |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> ( b e. |^| ( S \ suc j ) <-> b e. suc j ) ) |
99 |
|
df-suc |
|- suc j = ( j u. { j } ) |
100 |
99
|
eleq2i |
|- ( b e. suc j <-> b e. ( j u. { j } ) ) |
101 |
98 100
|
bitrdi |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> ( b e. |^| ( S \ suc j ) <-> b e. ( j u. { j } ) ) ) |
102 |
101
|
expr |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( b e. S -> ( b e. |^| ( S \ suc j ) <-> b e. ( j u. { j } ) ) ) ) |
103 |
102
|
pm5.32rd |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( b e. |^| ( S \ suc j ) /\ b e. S ) <-> ( b e. ( j u. { j } ) /\ b e. S ) ) ) |
104 |
|
elin |
|- ( b e. ( |^| ( S \ suc j ) i^i S ) <-> ( b e. |^| ( S \ suc j ) /\ b e. S ) ) |
105 |
|
elin |
|- ( b e. ( ( j u. { j } ) i^i S ) <-> ( b e. ( j u. { j } ) /\ b e. S ) ) |
106 |
103 104 105
|
3bitr4g |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( b e. ( |^| ( S \ suc j ) i^i S ) <-> b e. ( ( j u. { j } ) i^i S ) ) ) |
107 |
106
|
eqrdv |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j u. { j } ) i^i S ) ) |
108 |
|
indir |
|- ( ( j u. { j } ) i^i S ) = ( ( j i^i S ) u. ( { j } i^i S ) ) |
109 |
107 108
|
eqtrdi |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j i^i S ) u. ( { j } i^i S ) ) ) |
110 |
|
snssi |
|- ( j e. S -> { j } C_ S ) |
111 |
|
df-ss |
|- ( { j } C_ S <-> ( { j } i^i S ) = { j } ) |
112 |
110 111
|
sylib |
|- ( j e. S -> ( { j } i^i S ) = { j } ) |
113 |
112
|
uneq2d |
|- ( j e. S -> ( ( j i^i S ) u. ( { j } i^i S ) ) = ( ( j i^i S ) u. { j } ) ) |
114 |
113
|
ad2antrl |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) u. ( { j } i^i S ) ) = ( ( j i^i S ) u. { j } ) ) |
115 |
109 114
|
eqtrd |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j i^i S ) u. { j } ) ) |
116 |
|
df-suc |
|- suc a = ( a u. { a } ) |
117 |
116
|
a1i |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> suc a = ( a u. { a } ) ) |
118 |
67 115 117
|
3brtr4d |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) |
119 |
|
ineq1 |
|- ( b = |^| ( S \ suc j ) -> ( b i^i S ) = ( |^| ( S \ suc j ) i^i S ) ) |
120 |
119
|
breq1d |
|- ( b = |^| ( S \ suc j ) -> ( ( b i^i S ) ~~ suc a <-> ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) ) |
121 |
120
|
rspcev |
|- ( ( |^| ( S \ suc j ) e. S /\ ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) -> E. b e. S ( b i^i S ) ~~ suc a ) |
122 |
45 118 121
|
syl2anc |
|- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> E. b e. S ( b i^i S ) ~~ suc a ) |
123 |
122
|
rexlimdvaa |
|- ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. b e. S ( b i^i S ) ~~ suc a ) ) |
124 |
|
ineq1 |
|- ( b = j -> ( b i^i S ) = ( j i^i S ) ) |
125 |
124
|
breq1d |
|- ( b = j -> ( ( b i^i S ) ~~ suc a <-> ( j i^i S ) ~~ suc a ) ) |
126 |
125
|
cbvrexvw |
|- ( E. b e. S ( b i^i S ) ~~ suc a <-> E. j e. S ( j i^i S ) ~~ suc a ) |
127 |
123 126
|
syl6ib |
|- ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. j e. S ( j i^i S ) ~~ suc a ) ) |
128 |
127
|
ex |
|- ( a e. _om -> ( ( S C_ _om /\ -. S e. Fin ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. j e. S ( j i^i S ) ~~ suc a ) ) ) |
129 |
2 4 6 21 128
|
finds2 |
|- ( i e. _om -> ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( j i^i S ) ~~ i ) ) |
130 |
129
|
impcom |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E. j e. S ( j i^i S ) ~~ i ) |