Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem22.b |
|- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
2 |
|
ordom |
|- Ord _om |
3 |
|
ordwe |
|- ( Ord _om -> _E We _om ) |
4 |
|
weso |
|- ( _E We _om -> _E Or _om ) |
5 |
2 3 4
|
mp2b |
|- _E Or _om |
6 |
5
|
a1i |
|- ( ( S C_ _om /\ -. S e. Fin ) -> _E Or _om ) |
7 |
|
sopo |
|- ( _E Or _om -> _E Po _om ) |
8 |
5 7
|
ax-mp |
|- _E Po _om |
9 |
|
poss |
|- ( S C_ _om -> ( _E Po _om -> _E Po S ) ) |
10 |
8 9
|
mpi |
|- ( S C_ _om -> _E Po S ) |
11 |
10
|
adantr |
|- ( ( S C_ _om /\ -. S e. Fin ) -> _E Po S ) |
12 |
1
|
fin23lem22 |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -1-1-onto-> S ) |
13 |
|
f1ofo |
|- ( C : _om -1-1-onto-> S -> C : _om -onto-> S ) |
14 |
12 13
|
syl |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -onto-> S ) |
15 |
|
nnsdomel |
|- ( ( a e. _om /\ b e. _om ) -> ( a e. b <-> a ~< b ) ) |
16 |
15
|
adantl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b <-> a ~< b ) ) |
17 |
16
|
biimpd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> a ~< b ) ) |
18 |
|
fin23lem23 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. _om ) -> E! j e. S ( j i^i S ) ~~ a ) |
19 |
18
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ a ) |
20 |
|
ineq1 |
|- ( j = i -> ( j i^i S ) = ( i i^i S ) ) |
21 |
20
|
breq1d |
|- ( j = i -> ( ( j i^i S ) ~~ a <-> ( i i^i S ) ~~ a ) ) |
22 |
21
|
cbvreuvw |
|- ( E! j e. S ( j i^i S ) ~~ a <-> E! i e. S ( i i^i S ) ~~ a ) |
23 |
19 22
|
sylib |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ a ) |
24 |
|
nfv |
|- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a |
25 |
21
|
cbvriotavw |
|- ( iota_ j e. S ( j i^i S ) ~~ a ) = ( iota_ i e. S ( i i^i S ) ~~ a ) |
26 |
|
ineq1 |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ) |
27 |
26
|
breq1d |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ a ) -> ( ( i i^i S ) ~~ a <-> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
28 |
24 25 27
|
riotaprop |
|- ( E! i e. S ( i i^i S ) ~~ a -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
29 |
23 28
|
syl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) ) |
30 |
29
|
simprd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
31 |
30
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a ) |
32 |
|
simprr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< b ) |
33 |
|
fin23lem23 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ b e. _om ) -> E! j e. S ( j i^i S ) ~~ b ) |
34 |
33
|
adantrl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! j e. S ( j i^i S ) ~~ b ) |
35 |
20
|
breq1d |
|- ( j = i -> ( ( j i^i S ) ~~ b <-> ( i i^i S ) ~~ b ) ) |
36 |
35
|
cbvreuvw |
|- ( E! j e. S ( j i^i S ) ~~ b <-> E! i e. S ( i i^i S ) ~~ b ) |
37 |
34 36
|
sylib |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> E! i e. S ( i i^i S ) ~~ b ) |
38 |
|
nfv |
|- F/ i ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b |
39 |
35
|
cbvriotavw |
|- ( iota_ j e. S ( j i^i S ) ~~ b ) = ( iota_ i e. S ( i i^i S ) ~~ b ) |
40 |
|
ineq1 |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( i i^i S ) = ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
41 |
40
|
breq1d |
|- ( i = ( iota_ j e. S ( j i^i S ) ~~ b ) -> ( ( i i^i S ) ~~ b <-> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
42 |
38 39 41
|
riotaprop |
|- ( E! i e. S ( i i^i S ) ~~ b -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
43 |
37 42
|
syl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) e. S /\ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) ) |
44 |
43
|
simprd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ~~ b ) |
45 |
44
|
ensymd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
46 |
45
|
adantrr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
47 |
|
sdomentr |
|- ( ( a ~< b /\ b ~~ ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
48 |
32 46 47
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
49 |
|
ensdomtr |
|- ( ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~~ a /\ a ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
50 |
31 48 49
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( ( a e. _om /\ b e. _om ) /\ a ~< b ) ) -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) |
51 |
50
|
expr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a ~< b -> ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) ) |
52 |
|
simpll |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ _om ) |
53 |
|
omsson |
|- _om C_ On |
54 |
52 53
|
sstrdi |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> S C_ On ) |
55 |
29
|
simpld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. S ) |
56 |
54 55
|
sseldd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. On ) |
57 |
43
|
simpld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. S ) |
58 |
54 57
|
sseldd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) |
59 |
|
onsdominel |
|- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On /\ ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
60 |
59
|
3expia |
|- ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) e. On /\ ( iota_ j e. S ( j i^i S ) ~~ b ) e. On ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
61 |
56 58 60
|
syl2anc |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( ( iota_ j e. S ( j i^i S ) ~~ a ) i^i S ) ~< ( ( iota_ j e. S ( j i^i S ) ~~ b ) i^i S ) -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
62 |
17 51 61
|
3syld |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
63 |
|
breq2 |
|- ( i = a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ a ) ) |
64 |
63
|
riotabidv |
|- ( i = a -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
65 |
|
simprl |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> a e. _om ) |
66 |
1 64 65 55
|
fvmptd3 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` a ) = ( iota_ j e. S ( j i^i S ) ~~ a ) ) |
67 |
|
breq2 |
|- ( i = b -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ b ) ) |
68 |
67
|
riotabidv |
|- ( i = b -> ( iota_ j e. S ( j i^i S ) ~~ i ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
69 |
|
simprr |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> b e. _om ) |
70 |
1 68 69 57
|
fvmptd3 |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( C ` b ) = ( iota_ j e. S ( j i^i S ) ~~ b ) ) |
71 |
66 70
|
eleq12d |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( ( C ` a ) e. ( C ` b ) <-> ( iota_ j e. S ( j i^i S ) ~~ a ) e. ( iota_ j e. S ( j i^i S ) ~~ b ) ) ) |
72 |
62 71
|
sylibrd |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a e. b -> ( C ` a ) e. ( C ` b ) ) ) |
73 |
|
epel |
|- ( a _E b <-> a e. b ) |
74 |
|
fvex |
|- ( C ` b ) e. _V |
75 |
74
|
epeli |
|- ( ( C ` a ) _E ( C ` b ) <-> ( C ` a ) e. ( C ` b ) ) |
76 |
72 73 75
|
3imtr4g |
|- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( a e. _om /\ b e. _om ) ) -> ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
77 |
76
|
ralrimivva |
|- ( ( S C_ _om /\ -. S e. Fin ) -> A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) |
78 |
|
soisoi |
|- ( ( ( _E Or _om /\ _E Po S ) /\ ( C : _om -onto-> S /\ A. a e. _om A. b e. _om ( a _E b -> ( C ` a ) _E ( C ` b ) ) ) ) -> C Isom _E , _E ( _om , S ) ) |
79 |
6 11 14 77 78
|
syl22anc |
|- ( ( S C_ _om /\ -. S e. Fin ) -> C Isom _E , _E ( _om , S ) ) |