| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
| 2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
| 3 |
|
fin23lem.b |
|- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
| 4 |
|
fin23lem.c |
|- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
| 5 |
|
fin23lem.d |
|- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
| 6 |
|
fin23lem.e |
|- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 7 |
|
eqif |
|- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
| 8 |
6 7
|
mpbi |
|- ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) |
| 9 |
|
difss |
|- ( _om \ P ) C_ _om |
| 10 |
|
ominf |
|- -. _om e. Fin |
| 11 |
3
|
ssrab3 |
|- P C_ _om |
| 12 |
|
undif |
|- ( P C_ _om <-> ( P u. ( _om \ P ) ) = _om ) |
| 13 |
11 12
|
mpbi |
|- ( P u. ( _om \ P ) ) = _om |
| 14 |
|
unfi |
|- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> ( P u. ( _om \ P ) ) e. Fin ) |
| 15 |
13 14
|
eqeltrrid |
|- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> _om e. Fin ) |
| 16 |
15
|
ex |
|- ( P e. Fin -> ( ( _om \ P ) e. Fin -> _om e. Fin ) ) |
| 17 |
10 16
|
mtoi |
|- ( P e. Fin -> -. ( _om \ P ) e. Fin ) |
| 18 |
5
|
fin23lem22 |
|- ( ( ( _om \ P ) C_ _om /\ -. ( _om \ P ) e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 19 |
9 17 18
|
sylancr |
|- ( P e. Fin -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 20 |
19
|
adantl |
|- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 21 |
|
f1of1 |
|- ( R : _om -1-1-onto-> ( _om \ P ) -> R : _om -1-1-> ( _om \ P ) ) |
| 22 |
|
f1ss |
|- ( ( R : _om -1-1-> ( _om \ P ) /\ ( _om \ P ) C_ _om ) -> R : _om -1-1-> _om ) |
| 23 |
9 22
|
mpan2 |
|- ( R : _om -1-1-> ( _om \ P ) -> R : _om -1-1-> _om ) |
| 24 |
20 21 23
|
3syl |
|- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> R : _om -1-1-> _om ) |
| 25 |
|
f1co |
|- ( ( t : _om -1-1-> _V /\ R : _om -1-1-> _om ) -> ( t o. R ) : _om -1-1-> _V ) |
| 26 |
24 25
|
syldan |
|- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> ( t o. R ) : _om -1-1-> _V ) |
| 27 |
|
f1eq1 |
|- ( Z = ( t o. R ) -> ( Z : _om -1-1-> _V <-> ( t o. R ) : _om -1-1-> _V ) ) |
| 28 |
26 27
|
syl5ibrcom |
|- ( ( t : _om -1-1-> _V /\ P e. Fin ) -> ( Z = ( t o. R ) -> Z : _om -1-1-> _V ) ) |
| 29 |
28
|
impr |
|- ( ( t : _om -1-1-> _V /\ ( P e. Fin /\ Z = ( t o. R ) ) ) -> Z : _om -1-1-> _V ) |
| 30 |
|
fvex |
|- ( t ` z ) e. _V |
| 31 |
30
|
difexi |
|- ( ( t ` z ) \ |^| ran U ) e. _V |
| 32 |
31
|
rgenw |
|- A. z e. P ( ( t ` z ) \ |^| ran U ) e. _V |
| 33 |
|
eqid |
|- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 34 |
33
|
fmpt |
|- ( A. z e. P ( ( t ` z ) \ |^| ran U ) e. _V <-> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V ) |
| 35 |
32 34
|
mpbi |
|- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V |
| 36 |
35
|
a1i |
|- ( t : _om -1-1-> _V -> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V ) |
| 37 |
|
fveq2 |
|- ( z = a -> ( t ` z ) = ( t ` a ) ) |
| 38 |
37
|
difeq1d |
|- ( z = a -> ( ( t ` z ) \ |^| ran U ) = ( ( t ` a ) \ |^| ran U ) ) |
| 39 |
|
fvex |
|- ( t ` a ) e. _V |
| 40 |
39
|
difexi |
|- ( ( t ` a ) \ |^| ran U ) e. _V |
| 41 |
38 33 40
|
fvmpt |
|- ( a e. P -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( t ` a ) \ |^| ran U ) ) |
| 42 |
41
|
ad2antrl |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( t ` a ) \ |^| ran U ) ) |
| 43 |
|
fveq2 |
|- ( z = b -> ( t ` z ) = ( t ` b ) ) |
| 44 |
43
|
difeq1d |
|- ( z = b -> ( ( t ` z ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) ) |
| 45 |
|
fvex |
|- ( t ` b ) e. _V |
| 46 |
45
|
difexi |
|- ( ( t ` b ) \ |^| ran U ) e. _V |
| 47 |
44 33 46
|
fvmpt |
|- ( b e. P -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) = ( ( t ` b ) \ |^| ran U ) ) |
| 48 |
47
|
ad2antll |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) = ( ( t ` b ) \ |^| ran U ) ) |
| 49 |
42 48
|
eqeq12d |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) <-> ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) ) ) |
| 50 |
|
uneq2 |
|- ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) ) |
| 51 |
|
fveq2 |
|- ( v = a -> ( t ` v ) = ( t ` a ) ) |
| 52 |
51
|
sseq2d |
|- ( v = a -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` a ) ) ) |
| 53 |
52 3
|
elrab2 |
|- ( a e. P <-> ( a e. _om /\ |^| ran U C_ ( t ` a ) ) ) |
| 54 |
53
|
simprbi |
|- ( a e. P -> |^| ran U C_ ( t ` a ) ) |
| 55 |
54
|
ad2antrl |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> |^| ran U C_ ( t ` a ) ) |
| 56 |
|
undif |
|- ( |^| ran U C_ ( t ` a ) <-> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( t ` a ) ) |
| 57 |
55 56
|
sylib |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( t ` a ) ) |
| 58 |
|
fveq2 |
|- ( v = b -> ( t ` v ) = ( t ` b ) ) |
| 59 |
58
|
sseq2d |
|- ( v = b -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` b ) ) ) |
| 60 |
59 3
|
elrab2 |
|- ( b e. P <-> ( b e. _om /\ |^| ran U C_ ( t ` b ) ) ) |
| 61 |
60
|
simprbi |
|- ( b e. P -> |^| ran U C_ ( t ` b ) ) |
| 62 |
61
|
ad2antll |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> |^| ran U C_ ( t ` b ) ) |
| 63 |
|
undif |
|- ( |^| ran U C_ ( t ` b ) <-> ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) = ( t ` b ) ) |
| 64 |
62 63
|
sylib |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) = ( t ` b ) ) |
| 65 |
57 64
|
eqeq12d |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( |^| ran U u. ( ( t ` a ) \ |^| ran U ) ) = ( |^| ran U u. ( ( t ` b ) \ |^| ran U ) ) <-> ( t ` a ) = ( t ` b ) ) ) |
| 66 |
50 65
|
imbitrid |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> ( t ` a ) = ( t ` b ) ) ) |
| 67 |
11
|
sseli |
|- ( a e. P -> a e. _om ) |
| 68 |
11
|
sseli |
|- ( b e. P -> b e. _om ) |
| 69 |
67 68
|
anim12i |
|- ( ( a e. P /\ b e. P ) -> ( a e. _om /\ b e. _om ) ) |
| 70 |
|
f1fveq |
|- ( ( t : _om -1-1-> _V /\ ( a e. _om /\ b e. _om ) ) -> ( ( t ` a ) = ( t ` b ) <-> a = b ) ) |
| 71 |
69 70
|
sylan2 |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( t ` a ) = ( t ` b ) <-> a = b ) ) |
| 72 |
66 71
|
sylibd |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( t ` a ) \ |^| ran U ) = ( ( t ` b ) \ |^| ran U ) -> a = b ) ) |
| 73 |
49 72
|
sylbid |
|- ( ( t : _om -1-1-> _V /\ ( a e. P /\ b e. P ) ) -> ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) |
| 74 |
73
|
ralrimivva |
|- ( t : _om -1-1-> _V -> A. a e. P A. b e. P ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) |
| 75 |
|
dff13 |
|- ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V <-> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P --> _V /\ A. a e. P A. b e. P ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` a ) = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) ` b ) -> a = b ) ) ) |
| 76 |
36 74 75
|
sylanbrc |
|- ( t : _om -1-1-> _V -> ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V ) |
| 77 |
4
|
fin23lem22 |
|- ( ( P C_ _om /\ -. P e. Fin ) -> Q : _om -1-1-onto-> P ) |
| 78 |
|
f1of1 |
|- ( Q : _om -1-1-onto-> P -> Q : _om -1-1-> P ) |
| 79 |
77 78
|
syl |
|- ( ( P C_ _om /\ -. P e. Fin ) -> Q : _om -1-1-> P ) |
| 80 |
11 79
|
mpan |
|- ( -. P e. Fin -> Q : _om -1-1-> P ) |
| 81 |
|
f1co |
|- ( ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) : P -1-1-> _V /\ Q : _om -1-1-> P ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) |
| 82 |
76 80 81
|
syl2an |
|- ( ( t : _om -1-1-> _V /\ -. P e. Fin ) -> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) |
| 83 |
|
f1eq1 |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( Z : _om -1-1-> _V <-> ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) : _om -1-1-> _V ) ) |
| 84 |
82 83
|
syl5ibrcom |
|- ( ( t : _om -1-1-> _V /\ -. P e. Fin ) -> ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> Z : _om -1-1-> _V ) ) |
| 85 |
84
|
impr |
|- ( ( t : _om -1-1-> _V /\ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> Z : _om -1-1-> _V ) |
| 86 |
29 85
|
jaodan |
|- ( ( t : _om -1-1-> _V /\ ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) -> Z : _om -1-1-> _V ) |
| 87 |
8 86
|
mpan2 |
|- ( t : _om -1-1-> _V -> Z : _om -1-1-> _V ) |