Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
3 |
|
fin23lem.b |
|- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
4 |
|
fin23lem.c |
|- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
5 |
|
fin23lem.d |
|- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
6 |
|
fin23lem.e |
|- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
7 |
|
eqif |
|- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
8 |
7
|
biimpi |
|- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
9 |
|
rneq |
|- ( Z = ( t o. R ) -> ran Z = ran ( t o. R ) ) |
10 |
9
|
unieqd |
|- ( Z = ( t o. R ) -> U. ran Z = U. ran ( t o. R ) ) |
11 |
|
rncoss |
|- ran ( t o. R ) C_ ran t |
12 |
11
|
unissi |
|- U. ran ( t o. R ) C_ U. ran t |
13 |
10 12
|
eqsstrdi |
|- ( Z = ( t o. R ) -> U. ran Z C_ U. ran t ) |
14 |
13
|
adantl |
|- ( ( P e. Fin /\ Z = ( t o. R ) ) -> U. ran Z C_ U. ran t ) |
15 |
|
rneq |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ran Z = ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
16 |
15
|
unieqd |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z = U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
17 |
|
rncoss |
|- ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
18 |
17
|
unissi |
|- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
19 |
|
unissb |
|- ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) C_ U. ran t <-> A. a e. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) a C_ U. ran t ) |
20 |
|
abid |
|- ( a e. { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } <-> E. z e. P a = ( ( t ` z ) \ |^| ran U ) ) |
21 |
|
fvssunirn |
|- ( t ` z ) C_ U. ran t |
22 |
21
|
a1i |
|- ( z e. P -> ( t ` z ) C_ U. ran t ) |
23 |
22
|
ssdifssd |
|- ( z e. P -> ( ( t ` z ) \ |^| ran U ) C_ U. ran t ) |
24 |
|
sseq1 |
|- ( a = ( ( t ` z ) \ |^| ran U ) -> ( a C_ U. ran t <-> ( ( t ` z ) \ |^| ran U ) C_ U. ran t ) ) |
25 |
23 24
|
syl5ibrcom |
|- ( z e. P -> ( a = ( ( t ` z ) \ |^| ran U ) -> a C_ U. ran t ) ) |
26 |
25
|
rexlimiv |
|- ( E. z e. P a = ( ( t ` z ) \ |^| ran U ) -> a C_ U. ran t ) |
27 |
20 26
|
sylbi |
|- ( a e. { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } -> a C_ U. ran t ) |
28 |
|
eqid |
|- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
29 |
28
|
rnmpt |
|- ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } |
30 |
27 29
|
eleq2s |
|- ( a e. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -> a C_ U. ran t ) |
31 |
19 30
|
mprgbir |
|- U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) C_ U. ran t |
32 |
18 31
|
sstri |
|- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran t |
33 |
16 32
|
eqsstrdi |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z C_ U. ran t ) |
34 |
33
|
adantl |
|- ( ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> U. ran Z C_ U. ran t ) |
35 |
14 34
|
jaoi |
|- ( ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> U. ran Z C_ U. ran t ) |
36 |
6 8 35
|
mp2b |
|- U. ran Z C_ U. ran t |