| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
| 2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
| 3 |
|
fin23lem.b |
|- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
| 4 |
|
fin23lem.c |
|- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
| 5 |
|
fin23lem.d |
|- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
| 6 |
|
fin23lem.e |
|- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 7 |
|
eqif |
|- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
| 8 |
7
|
biimpi |
|- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
| 9 |
|
simpr |
|- ( ( P e. Fin /\ Fun t ) -> Fun t ) |
| 10 |
5
|
funmpt2 |
|- Fun R |
| 11 |
|
funco |
|- ( ( Fun t /\ Fun R ) -> Fun ( t o. R ) ) |
| 12 |
9 10 11
|
sylancl |
|- ( ( P e. Fin /\ Fun t ) -> Fun ( t o. R ) ) |
| 13 |
|
elunirn |
|- ( Fun ( t o. R ) -> ( a e. U. ran ( t o. R ) <-> E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) ) ) |
| 14 |
12 13
|
syl |
|- ( ( P e. Fin /\ Fun t ) -> ( a e. U. ran ( t o. R ) <-> E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) ) ) |
| 15 |
|
dmcoss |
|- dom ( t o. R ) C_ dom R |
| 16 |
15
|
sseli |
|- ( b e. dom ( t o. R ) -> b e. dom R ) |
| 17 |
|
fvco |
|- ( ( Fun R /\ b e. dom R ) -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
| 18 |
10 17
|
mpan |
|- ( b e. dom R -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
| 19 |
18
|
adantl |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
| 20 |
19
|
eleq2d |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( ( t o. R ) ` b ) <-> a e. ( t ` ( R ` b ) ) ) ) |
| 21 |
|
incom |
|- ( ( t ` ( R ` b ) ) i^i |^| ran U ) = ( |^| ran U i^i ( t ` ( R ` b ) ) ) |
| 22 |
|
difss |
|- ( _om \ P ) C_ _om |
| 23 |
|
ominf |
|- -. _om e. Fin |
| 24 |
3
|
ssrab3 |
|- P C_ _om |
| 25 |
|
undif |
|- ( P C_ _om <-> ( P u. ( _om \ P ) ) = _om ) |
| 26 |
24 25
|
mpbi |
|- ( P u. ( _om \ P ) ) = _om |
| 27 |
|
unfi |
|- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> ( P u. ( _om \ P ) ) e. Fin ) |
| 28 |
26 27
|
eqeltrrid |
|- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> _om e. Fin ) |
| 29 |
28
|
ex |
|- ( P e. Fin -> ( ( _om \ P ) e. Fin -> _om e. Fin ) ) |
| 30 |
23 29
|
mtoi |
|- ( P e. Fin -> -. ( _om \ P ) e. Fin ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( _om \ P ) e. Fin ) |
| 32 |
5
|
fin23lem22 |
|- ( ( ( _om \ P ) C_ _om /\ -. ( _om \ P ) e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 33 |
22 31 32
|
sylancr |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 34 |
|
f1of |
|- ( R : _om -1-1-onto-> ( _om \ P ) -> R : _om --> ( _om \ P ) ) |
| 35 |
33 34
|
syl |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> R : _om --> ( _om \ P ) ) |
| 36 |
|
simpr |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> b e. dom R ) |
| 37 |
35
|
fdmd |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> dom R = _om ) |
| 38 |
36 37
|
eleqtrd |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> b e. _om ) |
| 39 |
35 38
|
ffvelcdmd |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( R ` b ) e. ( _om \ P ) ) |
| 40 |
39
|
eldifbd |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( R ` b ) e. P ) |
| 41 |
3
|
eleq2i |
|- ( ( R ` b ) e. P <-> ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } ) |
| 42 |
40 41
|
sylnib |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } ) |
| 43 |
39
|
eldifad |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( R ` b ) e. _om ) |
| 44 |
|
fveq2 |
|- ( v = ( R ` b ) -> ( t ` v ) = ( t ` ( R ` b ) ) ) |
| 45 |
44
|
sseq2d |
|- ( v = ( R ` b ) -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 46 |
45
|
elrab3 |
|- ( ( R ` b ) e. _om -> ( ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 47 |
43 46
|
syl |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 48 |
42 47
|
mtbid |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. |^| ran U C_ ( t ` ( R ` b ) ) ) |
| 49 |
1
|
fin23lem20 |
|- ( ( R ` b ) e. _om -> ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
| 50 |
43 49
|
syl |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
| 51 |
|
orel1 |
|- ( -. |^| ran U C_ ( t ` ( R ` b ) ) -> ( ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) -> ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
| 52 |
48 50 51
|
sylc |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) |
| 53 |
21 52
|
eqtrid |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( t ` ( R ` b ) ) i^i |^| ran U ) = (/) ) |
| 54 |
|
disj |
|- ( ( ( t ` ( R ` b ) ) i^i |^| ran U ) = (/) <-> A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U ) |
| 55 |
53 54
|
sylib |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U ) |
| 56 |
|
rsp |
|- ( A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U -> ( a e. ( t ` ( R ` b ) ) -> -. a e. |^| ran U ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( t ` ( R ` b ) ) -> -. a e. |^| ran U ) ) |
| 58 |
20 57
|
sylbid |
|- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) |
| 59 |
58
|
ex |
|- ( ( P e. Fin /\ Fun t ) -> ( b e. dom R -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) ) |
| 60 |
16 59
|
syl5 |
|- ( ( P e. Fin /\ Fun t ) -> ( b e. dom ( t o. R ) -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) ) |
| 61 |
60
|
rexlimdv |
|- ( ( P e. Fin /\ Fun t ) -> ( E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) |
| 62 |
14 61
|
sylbid |
|- ( ( P e. Fin /\ Fun t ) -> ( a e. U. ran ( t o. R ) -> -. a e. |^| ran U ) ) |
| 63 |
62
|
ralrimiv |
|- ( ( P e. Fin /\ Fun t ) -> A. a e. U. ran ( t o. R ) -. a e. |^| ran U ) |
| 64 |
|
disj |
|- ( ( U. ran ( t o. R ) i^i |^| ran U ) = (/) <-> A. a e. U. ran ( t o. R ) -. a e. |^| ran U ) |
| 65 |
63 64
|
sylibr |
|- ( ( P e. Fin /\ Fun t ) -> ( U. ran ( t o. R ) i^i |^| ran U ) = (/) ) |
| 66 |
|
rneq |
|- ( Z = ( t o. R ) -> ran Z = ran ( t o. R ) ) |
| 67 |
66
|
unieqd |
|- ( Z = ( t o. R ) -> U. ran Z = U. ran ( t o. R ) ) |
| 68 |
67
|
ineq1d |
|- ( Z = ( t o. R ) -> ( U. ran Z i^i |^| ran U ) = ( U. ran ( t o. R ) i^i |^| ran U ) ) |
| 69 |
68
|
eqeq1d |
|- ( Z = ( t o. R ) -> ( ( U. ran Z i^i |^| ran U ) = (/) <-> ( U. ran ( t o. R ) i^i |^| ran U ) = (/) ) ) |
| 70 |
65 69
|
imbitrrid |
|- ( Z = ( t o. R ) -> ( ( P e. Fin /\ Fun t ) -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 71 |
70
|
expd |
|- ( Z = ( t o. R ) -> ( P e. Fin -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) ) |
| 72 |
71
|
impcom |
|- ( ( P e. Fin /\ Z = ( t o. R ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 73 |
|
rneq |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ran Z = ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 74 |
73
|
unieqd |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z = U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 75 |
74
|
ineq1d |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( U. ran Z i^i |^| ran U ) = ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) ) |
| 76 |
|
rncoss |
|- ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 77 |
76
|
unissi |
|- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 78 |
|
disj |
|- ( ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) <-> A. a e. U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -. a e. |^| ran U ) |
| 79 |
|
eluniab |
|- ( a e. U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } <-> E. b ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) ) |
| 80 |
|
eleq2 |
|- ( b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b <-> a e. ( ( t ` z ) \ |^| ran U ) ) ) |
| 81 |
|
eldifn |
|- ( a e. ( ( t ` z ) \ |^| ran U ) -> -. a e. |^| ran U ) |
| 82 |
80 81
|
biimtrdi |
|- ( b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b -> -. a e. |^| ran U ) ) |
| 83 |
82
|
rexlimivw |
|- ( E. z e. P b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b -> -. a e. |^| ran U ) ) |
| 84 |
83
|
impcom |
|- ( ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 85 |
84
|
exlimiv |
|- ( E. b ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 86 |
79 85
|
sylbi |
|- ( a e. U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } -> -. a e. |^| ran U ) |
| 87 |
|
eqid |
|- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 88 |
87
|
rnmpt |
|- ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } |
| 89 |
88
|
unieqi |
|- U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } |
| 90 |
86 89
|
eleq2s |
|- ( a e. U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 91 |
78 90
|
mprgbir |
|- ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) |
| 92 |
|
ssdisj |
|- ( ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) /\ ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) ) -> ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) = (/) ) |
| 93 |
77 91 92
|
mp2an |
|- ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) = (/) |
| 94 |
75 93
|
eqtrdi |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( U. ran Z i^i |^| ran U ) = (/) ) |
| 95 |
94
|
a1d |
|- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 96 |
95
|
adantl |
|- ( ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 97 |
72 96
|
jaoi |
|- ( ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 98 |
6 8 97
|
mp2b |
|- ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) |