Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem33.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
2 |
|
fin23lem.f |
|- ( ph -> h : _om -1-1-> _V ) |
3 |
|
fin23lem.g |
|- ( ph -> U. ran h C_ G ) |
4 |
|
fin23lem.h |
|- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
5 |
|
fin23lem.i |
|- Y = ( rec ( i , h ) |` _om ) |
6 |
|
fveq2 |
|- ( a = B -> ( Y ` a ) = ( Y ` B ) ) |
7 |
6
|
rneqd |
|- ( a = B -> ran ( Y ` a ) = ran ( Y ` B ) ) |
8 |
7
|
unieqd |
|- ( a = B -> U. ran ( Y ` a ) = U. ran ( Y ` B ) ) |
9 |
8
|
sseq1d |
|- ( a = B -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) |
10 |
9
|
imbi2d |
|- ( a = B -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) ) |
11 |
|
fveq2 |
|- ( a = b -> ( Y ` a ) = ( Y ` b ) ) |
12 |
11
|
rneqd |
|- ( a = b -> ran ( Y ` a ) = ran ( Y ` b ) ) |
13 |
12
|
unieqd |
|- ( a = b -> U. ran ( Y ` a ) = U. ran ( Y ` b ) ) |
14 |
13
|
sseq1d |
|- ( a = b -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) ) |
15 |
14
|
imbi2d |
|- ( a = b -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) ) ) |
16 |
|
fveq2 |
|- ( a = suc b -> ( Y ` a ) = ( Y ` suc b ) ) |
17 |
16
|
rneqd |
|- ( a = suc b -> ran ( Y ` a ) = ran ( Y ` suc b ) ) |
18 |
17
|
unieqd |
|- ( a = suc b -> U. ran ( Y ` a ) = U. ran ( Y ` suc b ) ) |
19 |
18
|
sseq1d |
|- ( a = suc b -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
20 |
19
|
imbi2d |
|- ( a = suc b -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
21 |
|
fveq2 |
|- ( a = A -> ( Y ` a ) = ( Y ` A ) ) |
22 |
21
|
rneqd |
|- ( a = A -> ran ( Y ` a ) = ran ( Y ` A ) ) |
23 |
22
|
unieqd |
|- ( a = A -> U. ran ( Y ` a ) = U. ran ( Y ` A ) ) |
24 |
23
|
sseq1d |
|- ( a = A -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) |
25 |
24
|
imbi2d |
|- ( a = A -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) ) |
26 |
|
ssid |
|- U. ran ( Y ` B ) C_ U. ran ( Y ` B ) |
27 |
26
|
2a1i |
|- ( B e. _om -> ( ph -> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) |
28 |
|
simprr |
|- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> ph ) |
29 |
|
simpll |
|- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> b e. _om ) |
30 |
1 2 3 4 5
|
fin23lem35 |
|- ( ( ph /\ b e. _om ) -> U. ran ( Y ` suc b ) C. U. ran ( Y ` b ) ) |
31 |
28 29 30
|
syl2anc |
|- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> U. ran ( Y ` suc b ) C. U. ran ( Y ` b ) ) |
32 |
31
|
pssssd |
|- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` b ) ) |
33 |
|
sstr2 |
|- ( U. ran ( Y ` suc b ) C_ U. ran ( Y ` b ) -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
34 |
32 33
|
syl |
|- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
35 |
34
|
expr |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
36 |
35
|
a2d |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( ph -> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) -> ( ph -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
37 |
10 15 20 25 27 36
|
findsg |
|- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( ph -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) |
38 |
37
|
impr |
|- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) |