Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem40.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
2 |
|
elmapi |
|- ( f e. ( ~P A ^m _om ) -> f : _om --> ~P A ) |
3 |
|
simpl |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> A e. Fin2 ) |
4 |
|
frn |
|- ( f : _om --> ~P A -> ran f C_ ~P A ) |
5 |
4
|
ad2antrl |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> ran f C_ ~P A ) |
6 |
|
fdm |
|- ( f : _om --> ~P A -> dom f = _om ) |
7 |
|
peano1 |
|- (/) e. _om |
8 |
|
ne0i |
|- ( (/) e. _om -> _om =/= (/) ) |
9 |
7 8
|
mp1i |
|- ( f : _om --> ~P A -> _om =/= (/) ) |
10 |
6 9
|
eqnetrd |
|- ( f : _om --> ~P A -> dom f =/= (/) ) |
11 |
|
dm0rn0 |
|- ( dom f = (/) <-> ran f = (/) ) |
12 |
11
|
necon3bii |
|- ( dom f =/= (/) <-> ran f =/= (/) ) |
13 |
10 12
|
sylib |
|- ( f : _om --> ~P A -> ran f =/= (/) ) |
14 |
13
|
ad2antrl |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> ran f =/= (/) ) |
15 |
|
ffn |
|- ( f : _om --> ~P A -> f Fn _om ) |
16 |
15
|
ad2antrl |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> f Fn _om ) |
17 |
|
sspss |
|- ( ( f ` suc b ) C_ ( f ` b ) <-> ( ( f ` suc b ) C. ( f ` b ) \/ ( f ` suc b ) = ( f ` b ) ) ) |
18 |
|
fvex |
|- ( f ` b ) e. _V |
19 |
|
fvex |
|- ( f ` suc b ) e. _V |
20 |
18 19
|
brcnv |
|- ( ( f ` b ) `' [C.] ( f ` suc b ) <-> ( f ` suc b ) [C.] ( f ` b ) ) |
21 |
18
|
brrpss |
|- ( ( f ` suc b ) [C.] ( f ` b ) <-> ( f ` suc b ) C. ( f ` b ) ) |
22 |
20 21
|
bitri |
|- ( ( f ` b ) `' [C.] ( f ` suc b ) <-> ( f ` suc b ) C. ( f ` b ) ) |
23 |
|
eqcom |
|- ( ( f ` b ) = ( f ` suc b ) <-> ( f ` suc b ) = ( f ` b ) ) |
24 |
22 23
|
orbi12i |
|- ( ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) <-> ( ( f ` suc b ) C. ( f ` b ) \/ ( f ` suc b ) = ( f ` b ) ) ) |
25 |
17 24
|
sylbb2 |
|- ( ( f ` suc b ) C_ ( f ` b ) -> ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
26 |
25
|
ralimi |
|- ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
27 |
26
|
ad2antll |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) ) |
28 |
|
porpss |
|- [C.] Po ran f |
29 |
|
cnvpo |
|- ( [C.] Po ran f <-> `' [C.] Po ran f ) |
30 |
28 29
|
mpbi |
|- `' [C.] Po ran f |
31 |
30
|
a1i |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> `' [C.] Po ran f ) |
32 |
|
sornom |
|- ( ( f Fn _om /\ A. b e. _om ( ( f ` b ) `' [C.] ( f ` suc b ) \/ ( f ` b ) = ( f ` suc b ) ) /\ `' [C.] Po ran f ) -> `' [C.] Or ran f ) |
33 |
16 27 31 32
|
syl3anc |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> `' [C.] Or ran f ) |
34 |
|
cnvso |
|- ( [C.] Or ran f <-> `' [C.] Or ran f ) |
35 |
33 34
|
sylibr |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> [C.] Or ran f ) |
36 |
|
fin2i2 |
|- ( ( ( A e. Fin2 /\ ran f C_ ~P A ) /\ ( ran f =/= (/) /\ [C.] Or ran f ) ) -> |^| ran f e. ran f ) |
37 |
3 5 14 35 36
|
syl22anc |
|- ( ( A e. Fin2 /\ ( f : _om --> ~P A /\ A. b e. _om ( f ` suc b ) C_ ( f ` b ) ) ) -> |^| ran f e. ran f ) |
38 |
37
|
expr |
|- ( ( A e. Fin2 /\ f : _om --> ~P A ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
39 |
2 38
|
sylan2 |
|- ( ( A e. Fin2 /\ f e. ( ~P A ^m _om ) ) -> ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
40 |
39
|
ralrimiva |
|- ( A e. Fin2 -> A. f e. ( ~P A ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) |
41 |
1
|
isfin3ds |
|- ( A e. Fin2 -> ( A e. F <-> A. f e. ( ~P A ^m _om ) ( A. b e. _om ( f ` suc b ) C_ ( f ` b ) -> |^| ran f e. ran f ) ) ) |
42 |
40 41
|
mpbird |
|- ( A e. Fin2 -> A e. F ) |