Step |
Hyp |
Ref |
Expression |
1 |
|
isfin3 |
|- ( A e. Fin3 <-> ~P A e. Fin4 ) |
2 |
|
isfin4-2 |
|- ( ~P A e. Fin4 -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) |
3 |
2
|
ibi |
|- ( ~P A e. Fin4 -> -. _om ~<_ ~P A ) |
4 |
|
reldom |
|- Rel ~<_ |
5 |
4
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
6 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
7 |
5 6
|
syl |
|- ( _om ~<_ A -> A ~< ~P A ) |
8 |
|
domsdomtr |
|- ( ( _om ~<_ A /\ A ~< ~P A ) -> _om ~< ~P A ) |
9 |
7 8
|
mpdan |
|- ( _om ~<_ A -> _om ~< ~P A ) |
10 |
|
sdomdom |
|- ( _om ~< ~P A -> _om ~<_ ~P A ) |
11 |
9 10
|
syl |
|- ( _om ~<_ A -> _om ~<_ ~P A ) |
12 |
3 11
|
nsyl |
|- ( ~P A e. Fin4 -> -. _om ~<_ A ) |
13 |
1 12
|
sylbi |
|- ( A e. Fin3 -> -. _om ~<_ A ) |
14 |
|
isfin4-2 |
|- ( A e. Fin3 -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
15 |
13 14
|
mpbird |
|- ( A e. Fin3 -> A e. Fin4 ) |