Metamath Proof Explorer


Theorem fin41

Description: Under countable choice, the IV-finite sets (Dedekind-finite) coincide with I-finite (finite in the usual sense) sets. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin41
|- Fin4 = Fin

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 domtriom
 |-  ( _om ~<_ x <-> -. x ~< _om )
3 2 con2bii
 |-  ( x ~< _om <-> -. _om ~<_ x )
4 isfinite
 |-  ( x e. Fin <-> x ~< _om )
5 isfin4-2
 |-  ( x e. _V -> ( x e. Fin4 <-> -. _om ~<_ x ) )
6 5 elv
 |-  ( x e. Fin4 <-> -. _om ~<_ x )
7 3 4 6 3bitr4ri
 |-  ( x e. Fin4 <-> x e. Fin )
8 7 eqriv
 |-  Fin4 = Fin