| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ensym |  |-  ( A ~~ B -> B ~~ A ) | 
						
							| 2 |  | bren |  |-  ( B ~~ A <-> E. f f : B -1-1-onto-> A ) | 
						
							| 3 |  | simpr |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> x C. B ) | 
						
							| 4 |  | f1of1 |  |-  ( f : B -1-1-onto-> A -> f : B -1-1-> A ) | 
						
							| 5 |  | pssss |  |-  ( x C. B -> x C_ B ) | 
						
							| 6 |  | ssid |  |-  B C_ B | 
						
							| 7 | 5 6 | jctir |  |-  ( x C. B -> ( x C_ B /\ B C_ B ) ) | 
						
							| 8 |  | f1imapss |  |-  ( ( f : B -1-1-> A /\ ( x C_ B /\ B C_ B ) ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) | 
						
							| 9 | 4 7 8 | syl2an |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) | 
						
							| 10 | 3 9 | mpbird |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. ( f " B ) ) | 
						
							| 11 |  | imadmrn |  |-  ( f " dom f ) = ran f | 
						
							| 12 |  | f1odm |  |-  ( f : B -1-1-onto-> A -> dom f = B ) | 
						
							| 13 | 12 | imaeq2d |  |-  ( f : B -1-1-onto-> A -> ( f " dom f ) = ( f " B ) ) | 
						
							| 14 |  | dff1o5 |  |-  ( f : B -1-1-onto-> A <-> ( f : B -1-1-> A /\ ran f = A ) ) | 
						
							| 15 | 14 | simprbi |  |-  ( f : B -1-1-onto-> A -> ran f = A ) | 
						
							| 16 | 11 13 15 | 3eqtr3a |  |-  ( f : B -1-1-onto-> A -> ( f " B ) = A ) | 
						
							| 17 | 16 | adantr |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " B ) = A ) | 
						
							| 18 | 17 | psseq2d |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> ( f " x ) C. A ) ) | 
						
							| 19 | 10 18 | mpbid |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. A ) | 
						
							| 20 | 19 | adantrr |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) C. A ) | 
						
							| 21 |  | vex |  |-  x e. _V | 
						
							| 22 | 21 | f1imaen |  |-  ( ( f : B -1-1-> A /\ x C_ B ) -> ( f " x ) ~~ x ) | 
						
							| 23 | 4 5 22 | syl2an |  |-  ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) ~~ x ) | 
						
							| 24 | 23 | adantrr |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ x ) | 
						
							| 25 |  | simprr |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> x ~~ B ) | 
						
							| 26 |  | entr |  |-  ( ( ( f " x ) ~~ x /\ x ~~ B ) -> ( f " x ) ~~ B ) | 
						
							| 27 | 24 25 26 | syl2anc |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ B ) | 
						
							| 28 |  | vex |  |-  f e. _V | 
						
							| 29 |  | f1oen3g |  |-  ( ( f e. _V /\ f : B -1-1-onto-> A ) -> B ~~ A ) | 
						
							| 30 | 28 29 | mpan |  |-  ( f : B -1-1-onto-> A -> B ~~ A ) | 
						
							| 31 | 30 | adantr |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> B ~~ A ) | 
						
							| 32 |  | entr |  |-  ( ( ( f " x ) ~~ B /\ B ~~ A ) -> ( f " x ) ~~ A ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ A ) | 
						
							| 34 |  | fin4i |  |-  ( ( ( f " x ) C. A /\ ( f " x ) ~~ A ) -> -. A e. Fin4 ) | 
						
							| 35 | 20 33 34 | syl2anc |  |-  ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> -. A e. Fin4 ) | 
						
							| 36 | 35 | ex |  |-  ( f : B -1-1-onto-> A -> ( ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) | 
						
							| 37 | 36 | exlimdv |  |-  ( f : B -1-1-onto-> A -> ( E. x ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) | 
						
							| 38 | 37 | con2d |  |-  ( f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) | 
						
							| 39 | 38 | exlimiv |  |-  ( E. f f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) | 
						
							| 40 | 2 39 | sylbi |  |-  ( B ~~ A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) | 
						
							| 41 |  | relen |  |-  Rel ~~ | 
						
							| 42 | 41 | brrelex1i |  |-  ( B ~~ A -> B e. _V ) | 
						
							| 43 |  | isfin4 |  |-  ( B e. _V -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( B ~~ A -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) | 
						
							| 45 | 40 44 | sylibrd |  |-  ( B ~~ A -> ( A e. Fin4 -> B e. Fin4 ) ) | 
						
							| 46 | 1 45 | syl |  |-  ( A ~~ B -> ( A e. Fin4 -> B e. Fin4 ) ) |