Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
2 |
|
bren |
|- ( B ~~ A <-> E. f f : B -1-1-onto-> A ) |
3 |
|
simpr |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> x C. B ) |
4 |
|
f1of1 |
|- ( f : B -1-1-onto-> A -> f : B -1-1-> A ) |
5 |
|
pssss |
|- ( x C. B -> x C_ B ) |
6 |
|
ssid |
|- B C_ B |
7 |
5 6
|
jctir |
|- ( x C. B -> ( x C_ B /\ B C_ B ) ) |
8 |
|
f1imapss |
|- ( ( f : B -1-1-> A /\ ( x C_ B /\ B C_ B ) ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) |
9 |
4 7 8
|
syl2an |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) |
10 |
3 9
|
mpbird |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. ( f " B ) ) |
11 |
|
imadmrn |
|- ( f " dom f ) = ran f |
12 |
|
f1odm |
|- ( f : B -1-1-onto-> A -> dom f = B ) |
13 |
12
|
imaeq2d |
|- ( f : B -1-1-onto-> A -> ( f " dom f ) = ( f " B ) ) |
14 |
|
dff1o5 |
|- ( f : B -1-1-onto-> A <-> ( f : B -1-1-> A /\ ran f = A ) ) |
15 |
14
|
simprbi |
|- ( f : B -1-1-onto-> A -> ran f = A ) |
16 |
11 13 15
|
3eqtr3a |
|- ( f : B -1-1-onto-> A -> ( f " B ) = A ) |
17 |
16
|
adantr |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " B ) = A ) |
18 |
17
|
psseq2d |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> ( f " x ) C. A ) ) |
19 |
10 18
|
mpbid |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. A ) |
20 |
19
|
adantrr |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) C. A ) |
21 |
|
vex |
|- x e. _V |
22 |
21
|
f1imaen |
|- ( ( f : B -1-1-> A /\ x C_ B ) -> ( f " x ) ~~ x ) |
23 |
4 5 22
|
syl2an |
|- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) ~~ x ) |
24 |
23
|
adantrr |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ x ) |
25 |
|
simprr |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> x ~~ B ) |
26 |
|
entr |
|- ( ( ( f " x ) ~~ x /\ x ~~ B ) -> ( f " x ) ~~ B ) |
27 |
24 25 26
|
syl2anc |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ B ) |
28 |
|
vex |
|- f e. _V |
29 |
|
f1oen3g |
|- ( ( f e. _V /\ f : B -1-1-onto-> A ) -> B ~~ A ) |
30 |
28 29
|
mpan |
|- ( f : B -1-1-onto-> A -> B ~~ A ) |
31 |
30
|
adantr |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> B ~~ A ) |
32 |
|
entr |
|- ( ( ( f " x ) ~~ B /\ B ~~ A ) -> ( f " x ) ~~ A ) |
33 |
27 31 32
|
syl2anc |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ A ) |
34 |
|
fin4i |
|- ( ( ( f " x ) C. A /\ ( f " x ) ~~ A ) -> -. A e. Fin4 ) |
35 |
20 33 34
|
syl2anc |
|- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> -. A e. Fin4 ) |
36 |
35
|
ex |
|- ( f : B -1-1-onto-> A -> ( ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) |
37 |
36
|
exlimdv |
|- ( f : B -1-1-onto-> A -> ( E. x ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) |
38 |
37
|
con2d |
|- ( f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
39 |
38
|
exlimiv |
|- ( E. f f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
40 |
2 39
|
sylbi |
|- ( B ~~ A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
41 |
|
relen |
|- Rel ~~ |
42 |
41
|
brrelex1i |
|- ( B ~~ A -> B e. _V ) |
43 |
|
isfin4 |
|- ( B e. _V -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
44 |
42 43
|
syl |
|- ( B ~~ A -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
45 |
40 44
|
sylibrd |
|- ( B ~~ A -> ( A e. Fin4 -> B e. Fin4 ) ) |
46 |
1 45
|
syl |
|- ( A ~~ B -> ( A e. Fin4 -> B e. Fin4 ) ) |