| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfin4 |  |-  ( A e. Fin4 -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) | 
						
							| 2 | 1 | ibi |  |-  ( A e. Fin4 -> -. E. x ( x C. A /\ x ~~ A ) ) | 
						
							| 3 |  | relen |  |-  Rel ~~ | 
						
							| 4 | 3 | brrelex1i |  |-  ( X ~~ A -> X e. _V ) | 
						
							| 5 | 4 | adantl |  |-  ( ( X C. A /\ X ~~ A ) -> X e. _V ) | 
						
							| 6 |  | psseq1 |  |-  ( x = X -> ( x C. A <-> X C. A ) ) | 
						
							| 7 |  | breq1 |  |-  ( x = X -> ( x ~~ A <-> X ~~ A ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( x = X -> ( ( x C. A /\ x ~~ A ) <-> ( X C. A /\ X ~~ A ) ) ) | 
						
							| 9 | 8 | spcegv |  |-  ( X e. _V -> ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) ) | 
						
							| 10 | 5 9 | mpcom |  |-  ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) | 
						
							| 11 | 2 10 | nsyl3 |  |-  ( ( X C. A /\ X ~~ A ) -> -. A e. Fin4 ) |