Step |
Hyp |
Ref |
Expression |
1 |
|
isfin4 |
|- ( A e. Fin4 -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
2 |
1
|
ibi |
|- ( A e. Fin4 -> -. E. x ( x C. A /\ x ~~ A ) ) |
3 |
|
relen |
|- Rel ~~ |
4 |
3
|
brrelex1i |
|- ( X ~~ A -> X e. _V ) |
5 |
4
|
adantl |
|- ( ( X C. A /\ X ~~ A ) -> X e. _V ) |
6 |
|
psseq1 |
|- ( x = X -> ( x C. A <-> X C. A ) ) |
7 |
|
breq1 |
|- ( x = X -> ( x ~~ A <-> X ~~ A ) ) |
8 |
6 7
|
anbi12d |
|- ( x = X -> ( ( x C. A /\ x ~~ A ) <-> ( X C. A /\ X ~~ A ) ) ) |
9 |
8
|
spcegv |
|- ( X e. _V -> ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) ) |
10 |
5 9
|
mpcom |
|- ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) |
11 |
2 10
|
nsyl3 |
|- ( ( X C. A /\ X ~~ A ) -> -. A e. Fin4 ) |