Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|- ( A = (/) -> ( A = (/) \/ A ~~ 1o ) ) |
2 |
|
sdom2en01 |
|- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |
3 |
1 2
|
sylibr |
|- ( A = (/) -> A ~< 2o ) |
4 |
3
|
orcd |
|- ( A = (/) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
5 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
6 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
7 |
5 6
|
eqsstri |
|- _om C_ Fin |
8 |
|
2onn |
|- 2o e. _om |
9 |
7 8
|
sselii |
|- 2o e. Fin |
10 |
|
relsdom |
|- Rel ~< |
11 |
10
|
brrelex1i |
|- ( A ~< ( A |_| A ) -> A e. _V ) |
12 |
|
fidomtri |
|- ( ( 2o e. Fin /\ A e. _V ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
13 |
9 11 12
|
sylancr |
|- ( A ~< ( A |_| A ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
14 |
|
xp2dju |
|- ( 2o X. A ) = ( A |_| A ) |
15 |
|
xpdom1g |
|- ( ( A e. _V /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
16 |
11 15
|
sylan |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
17 |
14 16
|
eqbrtrrid |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( A |_| A ) ~<_ ( A X. A ) ) |
18 |
|
sdomdomtr |
|- ( ( A ~< ( A |_| A ) /\ ( A |_| A ) ~<_ ( A X. A ) ) -> A ~< ( A X. A ) ) |
19 |
17 18
|
syldan |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> A ~< ( A X. A ) ) |
20 |
19
|
ex |
|- ( A ~< ( A |_| A ) -> ( 2o ~<_ A -> A ~< ( A X. A ) ) ) |
21 |
13 20
|
sylbird |
|- ( A ~< ( A |_| A ) -> ( -. A ~< 2o -> A ~< ( A X. A ) ) ) |
22 |
21
|
orrd |
|- ( A ~< ( A |_| A ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
23 |
4 22
|
jaoi |
|- ( ( A = (/) \/ A ~< ( A |_| A ) ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
24 |
|
isfin5 |
|- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
25 |
|
isfin6 |
|- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
26 |
23 24 25
|
3imtr4i |
|- ( A e. Fin5 -> A e. Fin6 ) |