| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|- ( A = (/) -> ( A = (/) \/ A ~~ 1o ) ) |
| 2 |
|
sdom2en01 |
|- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |
| 3 |
1 2
|
sylibr |
|- ( A = (/) -> A ~< 2o ) |
| 4 |
3
|
orcd |
|- ( A = (/) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 5 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
| 6 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
| 7 |
5 6
|
eqsstri |
|- _om C_ Fin |
| 8 |
|
2onn |
|- 2o e. _om |
| 9 |
7 8
|
sselii |
|- 2o e. Fin |
| 10 |
|
relsdom |
|- Rel ~< |
| 11 |
10
|
brrelex1i |
|- ( A ~< ( A |_| A ) -> A e. _V ) |
| 12 |
|
fidomtri |
|- ( ( 2o e. Fin /\ A e. _V ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
| 13 |
9 11 12
|
sylancr |
|- ( A ~< ( A |_| A ) -> ( 2o ~<_ A <-> -. A ~< 2o ) ) |
| 14 |
|
xp2dju |
|- ( 2o X. A ) = ( A |_| A ) |
| 15 |
|
xpdom1g |
|- ( ( A e. _V /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
| 16 |
11 15
|
sylan |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
| 17 |
14 16
|
eqbrtrrid |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> ( A |_| A ) ~<_ ( A X. A ) ) |
| 18 |
|
sdomdomtr |
|- ( ( A ~< ( A |_| A ) /\ ( A |_| A ) ~<_ ( A X. A ) ) -> A ~< ( A X. A ) ) |
| 19 |
17 18
|
syldan |
|- ( ( A ~< ( A |_| A ) /\ 2o ~<_ A ) -> A ~< ( A X. A ) ) |
| 20 |
19
|
ex |
|- ( A ~< ( A |_| A ) -> ( 2o ~<_ A -> A ~< ( A X. A ) ) ) |
| 21 |
13 20
|
sylbird |
|- ( A ~< ( A |_| A ) -> ( -. A ~< 2o -> A ~< ( A X. A ) ) ) |
| 22 |
21
|
orrd |
|- ( A ~< ( A |_| A ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 23 |
4 22
|
jaoi |
|- ( ( A = (/) \/ A ~< ( A |_| A ) ) -> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 24 |
|
isfin5 |
|- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
| 25 |
|
isfin6 |
|- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 26 |
23 24 25
|
3imtr4i |
|- ( A e. Fin5 -> A e. Fin6 ) |