| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfin6 | 
							 |-  ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							2onn | 
							 |-  2o e. _om  | 
						
						
							| 3 | 
							
								
							 | 
							ssid | 
							 |-  2o C_ 2o  | 
						
						
							| 4 | 
							
								
							 | 
							ssnnfi | 
							 |-  ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							mp2an | 
							 |-  2o e. Fin  | 
						
						
							| 6 | 
							
								
							 | 
							sdomdom | 
							 |-  ( A ~< 2o -> A ~<_ 2o )  | 
						
						
							| 7 | 
							
								
							 | 
							domfi | 
							 |-  ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							sylancr | 
							 |-  ( A ~< 2o -> A e. Fin )  | 
						
						
							| 9 | 
							
								
							 | 
							fin17 | 
							 |-  ( A e. Fin -> A e. Fin7 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( A ~< 2o -> A e. Fin7 )  | 
						
						
							| 11 | 
							
								
							 | 
							sdomnen | 
							 |-  ( A ~< ( A X. A ) -> -. A ~~ ( A X. A ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eldifi | 
							 |-  ( b e. ( On \ _om ) -> b e. On )  | 
						
						
							| 13 | 
							
								
							 | 
							ensym | 
							 |-  ( A ~~ b -> b ~~ A )  | 
						
						
							| 14 | 
							
								
							 | 
							isnumi | 
							 |-  ( ( b e. On /\ b ~~ A ) -> A e. dom card )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							syl2an | 
							 |-  ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A e. dom card )  | 
						
						
							| 16 | 
							
								
							 | 
							vex | 
							 |-  b e. _V  | 
						
						
							| 17 | 
							
								
							 | 
							eldif | 
							 |-  ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ordom | 
							 |-  Ord _om  | 
						
						
							| 19 | 
							
								
							 | 
							eloni | 
							 |-  ( b e. On -> Ord b )  | 
						
						
							| 20 | 
							
								
							 | 
							ordtri1 | 
							 |-  ( ( Ord _om /\ Ord b ) -> ( _om C_ b <-> -. b e. _om ) )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							sylancr | 
							 |-  ( b e. On -> ( _om C_ b <-> -. b e. _om ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpar | 
							 |-  ( ( b e. On /\ -. b e. _om ) -> _om C_ b )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							sylbi | 
							 |-  ( b e. ( On \ _om ) -> _om C_ b )  | 
						
						
							| 24 | 
							
								
							 | 
							ssdomg | 
							 |-  ( b e. _V -> ( _om C_ b -> _om ~<_ b ) )  | 
						
						
							| 25 | 
							
								16 23 24
							 | 
							mpsyl | 
							 |-  ( b e. ( On \ _om ) -> _om ~<_ b )  | 
						
						
							| 26 | 
							
								
							 | 
							domen2 | 
							 |-  ( A ~~ b -> ( _om ~<_ A <-> _om ~<_ b ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							imbitrrid | 
							 |-  ( A ~~ b -> ( b e. ( On \ _om ) -> _om ~<_ A ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							impcom | 
							 |-  ( ( b e. ( On \ _om ) /\ A ~~ b ) -> _om ~<_ A )  | 
						
						
							| 29 | 
							
								
							 | 
							infxpidm2 | 
							 |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A )  | 
						
						
							| 30 | 
							
								15 28 29
							 | 
							syl2anc | 
							 |-  ( ( b e. ( On \ _om ) /\ A ~~ b ) -> ( A X. A ) ~~ A )  | 
						
						
							| 31 | 
							
								
							 | 
							ensym | 
							 |-  ( ( A X. A ) ~~ A -> A ~~ ( A X. A ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl | 
							 |-  ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A ~~ ( A X. A ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							rexlimiva | 
							 |-  ( E. b e. ( On \ _om ) A ~~ b -> A ~~ ( A X. A ) )  | 
						
						
							| 34 | 
							
								11 33
							 | 
							nsyl | 
							 |-  ( A ~< ( A X. A ) -> -. E. b e. ( On \ _om ) A ~~ b )  | 
						
						
							| 35 | 
							
								
							 | 
							relsdom | 
							 |-  Rel ~<  | 
						
						
							| 36 | 
							
								35
							 | 
							brrelex1i | 
							 |-  ( A ~< ( A X. A ) -> A e. _V )  | 
						
						
							| 37 | 
							
								
							 | 
							isfin7 | 
							 |-  ( A e. _V -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							 |-  ( A ~< ( A X. A ) -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							mpbird | 
							 |-  ( A ~< ( A X. A ) -> A e. Fin7 )  | 
						
						
							| 40 | 
							
								10 39
							 | 
							jaoi | 
							 |-  ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. Fin7 )  | 
						
						
							| 41 | 
							
								1 40
							 | 
							sylbi | 
							 |-  ( A e. Fin6 -> A e. Fin7 )  |