Step |
Hyp |
Ref |
Expression |
1 |
|
isfin6 |
|- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
2 |
|
2onn |
|- 2o e. _om |
3 |
|
ssid |
|- 2o C_ 2o |
4 |
|
ssnnfi |
|- ( ( 2o e. _om /\ 2o C_ 2o ) -> 2o e. Fin ) |
5 |
2 3 4
|
mp2an |
|- 2o e. Fin |
6 |
|
sdomdom |
|- ( A ~< 2o -> A ~<_ 2o ) |
7 |
|
domfi |
|- ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) |
8 |
5 6 7
|
sylancr |
|- ( A ~< 2o -> A e. Fin ) |
9 |
|
fin17 |
|- ( A e. Fin -> A e. Fin7 ) |
10 |
8 9
|
syl |
|- ( A ~< 2o -> A e. Fin7 ) |
11 |
|
sdomnen |
|- ( A ~< ( A X. A ) -> -. A ~~ ( A X. A ) ) |
12 |
|
eldifi |
|- ( b e. ( On \ _om ) -> b e. On ) |
13 |
|
ensym |
|- ( A ~~ b -> b ~~ A ) |
14 |
|
isnumi |
|- ( ( b e. On /\ b ~~ A ) -> A e. dom card ) |
15 |
12 13 14
|
syl2an |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A e. dom card ) |
16 |
|
vex |
|- b e. _V |
17 |
|
eldif |
|- ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) ) |
18 |
|
ordom |
|- Ord _om |
19 |
|
eloni |
|- ( b e. On -> Ord b ) |
20 |
|
ordtri1 |
|- ( ( Ord _om /\ Ord b ) -> ( _om C_ b <-> -. b e. _om ) ) |
21 |
18 19 20
|
sylancr |
|- ( b e. On -> ( _om C_ b <-> -. b e. _om ) ) |
22 |
21
|
biimpar |
|- ( ( b e. On /\ -. b e. _om ) -> _om C_ b ) |
23 |
17 22
|
sylbi |
|- ( b e. ( On \ _om ) -> _om C_ b ) |
24 |
|
ssdomg |
|- ( b e. _V -> ( _om C_ b -> _om ~<_ b ) ) |
25 |
16 23 24
|
mpsyl |
|- ( b e. ( On \ _om ) -> _om ~<_ b ) |
26 |
|
domen2 |
|- ( A ~~ b -> ( _om ~<_ A <-> _om ~<_ b ) ) |
27 |
25 26
|
syl5ibr |
|- ( A ~~ b -> ( b e. ( On \ _om ) -> _om ~<_ A ) ) |
28 |
27
|
impcom |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> _om ~<_ A ) |
29 |
|
infxpidm2 |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
30 |
15 28 29
|
syl2anc |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> ( A X. A ) ~~ A ) |
31 |
|
ensym |
|- ( ( A X. A ) ~~ A -> A ~~ ( A X. A ) ) |
32 |
30 31
|
syl |
|- ( ( b e. ( On \ _om ) /\ A ~~ b ) -> A ~~ ( A X. A ) ) |
33 |
32
|
rexlimiva |
|- ( E. b e. ( On \ _om ) A ~~ b -> A ~~ ( A X. A ) ) |
34 |
11 33
|
nsyl |
|- ( A ~< ( A X. A ) -> -. E. b e. ( On \ _om ) A ~~ b ) |
35 |
|
relsdom |
|- Rel ~< |
36 |
35
|
brrelex1i |
|- ( A ~< ( A X. A ) -> A e. _V ) |
37 |
|
isfin7 |
|- ( A e. _V -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
38 |
36 37
|
syl |
|- ( A ~< ( A X. A ) -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
39 |
34 38
|
mpbird |
|- ( A ~< ( A X. A ) -> A e. Fin7 ) |
40 |
10 39
|
jaoi |
|- ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. Fin7 ) |
41 |
1 40
|
sylbi |
|- ( A e. Fin6 -> A e. Fin7 ) |