Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> A e. Fin ) |
2 |
|
simpr |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> -. A C_ B ) |
3 |
|
simpl3 |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> ( A C_ B \/ B C_ A ) ) |
4 |
|
orel1 |
|- ( -. A C_ B -> ( ( A C_ B \/ B C_ A ) -> B C_ A ) ) |
5 |
2 3 4
|
sylc |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B C_ A ) |
6 |
|
dfpss3 |
|- ( B C. A <-> ( B C_ A /\ -. A C_ B ) ) |
7 |
5 2 6
|
sylanbrc |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B C. A ) |
8 |
|
php3 |
|- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
9 |
1 7 8
|
syl2anc |
|- ( ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) /\ -. A C_ B ) -> B ~< A ) |
10 |
9
|
ex |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A C_ B -> B ~< A ) ) |
11 |
|
domnsym |
|- ( A ~<_ B -> -. B ~< A ) |
12 |
11
|
con2i |
|- ( B ~< A -> -. A ~<_ B ) |
13 |
10 12
|
syl6 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A C_ B -> -. A ~<_ B ) ) |
14 |
13
|
con4d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~<_ B -> A C_ B ) ) |
15 |
|
ssdomg |
|- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |
16 |
15
|
3ad2ant2 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A C_ B -> A ~<_ B ) ) |
17 |
14 16
|
impbid |
|- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~<_ B <-> A C_ B ) ) |