Step |
Hyp |
Ref |
Expression |
1 |
|
findcard.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
2 |
|
findcard.2 |
|- ( x = ( y \ { z } ) -> ( ph <-> ch ) ) |
3 |
|
findcard.3 |
|- ( x = y -> ( ph <-> th ) ) |
4 |
|
findcard.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
findcard.5 |
|- ps |
6 |
|
findcard.6 |
|- ( y e. Fin -> ( A. z e. y ch -> th ) ) |
7 |
|
isfi |
|- ( x e. Fin <-> E. w e. _om x ~~ w ) |
8 |
|
breq2 |
|- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
9 |
8
|
imbi1d |
|- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
10 |
9
|
albidv |
|- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
11 |
|
breq2 |
|- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
12 |
11
|
imbi1d |
|- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
13 |
12
|
albidv |
|- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
14 |
|
breq2 |
|- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
15 |
14
|
imbi1d |
|- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
16 |
15
|
albidv |
|- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
17 |
|
en0 |
|- ( x ~~ (/) <-> x = (/) ) |
18 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
19 |
17 18
|
sylbi |
|- ( x ~~ (/) -> ph ) |
20 |
19
|
ax-gen |
|- A. x ( x ~~ (/) -> ph ) |
21 |
|
peano2 |
|- ( v e. _om -> suc v e. _om ) |
22 |
|
breq2 |
|- ( w = suc v -> ( y ~~ w <-> y ~~ suc v ) ) |
23 |
22
|
rspcev |
|- ( ( suc v e. _om /\ y ~~ suc v ) -> E. w e. _om y ~~ w ) |
24 |
21 23
|
sylan |
|- ( ( v e. _om /\ y ~~ suc v ) -> E. w e. _om y ~~ w ) |
25 |
|
isfi |
|- ( y e. Fin <-> E. w e. _om y ~~ w ) |
26 |
24 25
|
sylibr |
|- ( ( v e. _om /\ y ~~ suc v ) -> y e. Fin ) |
27 |
26
|
3adant2 |
|- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> y e. Fin ) |
28 |
|
dif1en |
|- ( ( v e. _om /\ y ~~ suc v /\ z e. y ) -> ( y \ { z } ) ~~ v ) |
29 |
28
|
3expa |
|- ( ( ( v e. _om /\ y ~~ suc v ) /\ z e. y ) -> ( y \ { z } ) ~~ v ) |
30 |
|
vex |
|- y e. _V |
31 |
30
|
difexi |
|- ( y \ { z } ) e. _V |
32 |
|
breq1 |
|- ( x = ( y \ { z } ) -> ( x ~~ v <-> ( y \ { z } ) ~~ v ) ) |
33 |
32 2
|
imbi12d |
|- ( x = ( y \ { z } ) -> ( ( x ~~ v -> ph ) <-> ( ( y \ { z } ) ~~ v -> ch ) ) ) |
34 |
31 33
|
spcv |
|- ( A. x ( x ~~ v -> ph ) -> ( ( y \ { z } ) ~~ v -> ch ) ) |
35 |
29 34
|
syl5com |
|- ( ( ( v e. _om /\ y ~~ suc v ) /\ z e. y ) -> ( A. x ( x ~~ v -> ph ) -> ch ) ) |
36 |
35
|
ralrimdva |
|- ( ( v e. _om /\ y ~~ suc v ) -> ( A. x ( x ~~ v -> ph ) -> A. z e. y ch ) ) |
37 |
36
|
imp |
|- ( ( ( v e. _om /\ y ~~ suc v ) /\ A. x ( x ~~ v -> ph ) ) -> A. z e. y ch ) |
38 |
37
|
an32s |
|- ( ( ( v e. _om /\ A. x ( x ~~ v -> ph ) ) /\ y ~~ suc v ) -> A. z e. y ch ) |
39 |
38
|
3impa |
|- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> A. z e. y ch ) |
40 |
27 39 6
|
sylc |
|- ( ( v e. _om /\ A. x ( x ~~ v -> ph ) /\ y ~~ suc v ) -> th ) |
41 |
40
|
3exp |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( y ~~ suc v -> th ) ) ) |
42 |
41
|
alrimdv |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. y ( y ~~ suc v -> th ) ) ) |
43 |
|
breq1 |
|- ( x = y -> ( x ~~ suc v <-> y ~~ suc v ) ) |
44 |
43 3
|
imbi12d |
|- ( x = y -> ( ( x ~~ suc v -> ph ) <-> ( y ~~ suc v -> th ) ) ) |
45 |
44
|
cbvalvw |
|- ( A. x ( x ~~ suc v -> ph ) <-> A. y ( y ~~ suc v -> th ) ) |
46 |
42 45
|
syl6ibr |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
47 |
10 13 16 20 46
|
finds1 |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
48 |
47
|
19.21bi |
|- ( w e. _om -> ( x ~~ w -> ph ) ) |
49 |
48
|
rexlimiv |
|- ( E. w e. _om x ~~ w -> ph ) |
50 |
7 49
|
sylbi |
|- ( x e. Fin -> ph ) |
51 |
4 50
|
vtoclga |
|- ( A e. Fin -> ta ) |