Step |
Hyp |
Ref |
Expression |
1 |
|
findcard2OLD.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
2 |
|
findcard2OLD.2 |
|- ( x = y -> ( ph <-> ch ) ) |
3 |
|
findcard2OLD.3 |
|- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
4 |
|
findcard2OLD.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
findcard2OLD.5 |
|- ps |
6 |
|
findcard2OLD.6 |
|- ( y e. Fin -> ( ch -> th ) ) |
7 |
|
isfi |
|- ( x e. Fin <-> E. w e. _om x ~~ w ) |
8 |
|
breq2 |
|- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
9 |
8
|
imbi1d |
|- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
10 |
9
|
albidv |
|- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
11 |
|
breq2 |
|- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
12 |
11
|
imbi1d |
|- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
13 |
12
|
albidv |
|- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
14 |
|
breq2 |
|- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
15 |
14
|
imbi1d |
|- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
16 |
15
|
albidv |
|- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
17 |
|
en0 |
|- ( x ~~ (/) <-> x = (/) ) |
18 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
19 |
17 18
|
sylbi |
|- ( x ~~ (/) -> ph ) |
20 |
19
|
ax-gen |
|- A. x ( x ~~ (/) -> ph ) |
21 |
|
nsuceq0 |
|- suc v =/= (/) |
22 |
|
breq1 |
|- ( w = (/) -> ( w ~~ suc v <-> (/) ~~ suc v ) ) |
23 |
22
|
anbi2d |
|- ( w = (/) -> ( ( v e. _om /\ w ~~ suc v ) <-> ( v e. _om /\ (/) ~~ suc v ) ) ) |
24 |
|
peano1 |
|- (/) e. _om |
25 |
|
peano2 |
|- ( v e. _om -> suc v e. _om ) |
26 |
|
nneneq |
|- ( ( (/) e. _om /\ suc v e. _om ) -> ( (/) ~~ suc v <-> (/) = suc v ) ) |
27 |
24 25 26
|
sylancr |
|- ( v e. _om -> ( (/) ~~ suc v <-> (/) = suc v ) ) |
28 |
27
|
biimpa |
|- ( ( v e. _om /\ (/) ~~ suc v ) -> (/) = suc v ) |
29 |
28
|
eqcomd |
|- ( ( v e. _om /\ (/) ~~ suc v ) -> suc v = (/) ) |
30 |
23 29
|
syl6bi |
|- ( w = (/) -> ( ( v e. _om /\ w ~~ suc v ) -> suc v = (/) ) ) |
31 |
30
|
com12 |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( w = (/) -> suc v = (/) ) ) |
32 |
31
|
necon3d |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( suc v =/= (/) -> w =/= (/) ) ) |
33 |
21 32
|
mpi |
|- ( ( v e. _om /\ w ~~ suc v ) -> w =/= (/) ) |
34 |
33
|
ex |
|- ( v e. _om -> ( w ~~ suc v -> w =/= (/) ) ) |
35 |
|
n0 |
|- ( w =/= (/) <-> E. z z e. w ) |
36 |
|
dif1en |
|- ( ( v e. _om /\ w ~~ suc v /\ z e. w ) -> ( w \ { z } ) ~~ v ) |
37 |
36
|
3expia |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( z e. w -> ( w \ { z } ) ~~ v ) ) |
38 |
|
snssi |
|- ( z e. w -> { z } C_ w ) |
39 |
|
uncom |
|- ( ( w \ { z } ) u. { z } ) = ( { z } u. ( w \ { z } ) ) |
40 |
|
undif |
|- ( { z } C_ w <-> ( { z } u. ( w \ { z } ) ) = w ) |
41 |
40
|
biimpi |
|- ( { z } C_ w -> ( { z } u. ( w \ { z } ) ) = w ) |
42 |
39 41
|
eqtrid |
|- ( { z } C_ w -> ( ( w \ { z } ) u. { z } ) = w ) |
43 |
|
vex |
|- w e. _V |
44 |
43
|
difexi |
|- ( w \ { z } ) e. _V |
45 |
|
breq1 |
|- ( y = ( w \ { z } ) -> ( y ~~ v <-> ( w \ { z } ) ~~ v ) ) |
46 |
45
|
anbi2d |
|- ( y = ( w \ { z } ) -> ( ( v e. _om /\ y ~~ v ) <-> ( v e. _om /\ ( w \ { z } ) ~~ v ) ) ) |
47 |
|
uneq1 |
|- ( y = ( w \ { z } ) -> ( y u. { z } ) = ( ( w \ { z } ) u. { z } ) ) |
48 |
47
|
sbceq1d |
|- ( y = ( w \ { z } ) -> ( [. ( y u. { z } ) / x ]. ph <-> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
49 |
48
|
imbi2d |
|- ( y = ( w \ { z } ) -> ( ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) |
50 |
46 49
|
imbi12d |
|- ( y = ( w \ { z } ) -> ( ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) <-> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) ) |
51 |
|
breq1 |
|- ( x = y -> ( x ~~ v <-> y ~~ v ) ) |
52 |
51 2
|
imbi12d |
|- ( x = y -> ( ( x ~~ v -> ph ) <-> ( y ~~ v -> ch ) ) ) |
53 |
52
|
spvv |
|- ( A. x ( x ~~ v -> ph ) -> ( y ~~ v -> ch ) ) |
54 |
|
rspe |
|- ( ( v e. _om /\ y ~~ v ) -> E. v e. _om y ~~ v ) |
55 |
|
isfi |
|- ( y e. Fin <-> E. v e. _om y ~~ v ) |
56 |
54 55
|
sylibr |
|- ( ( v e. _om /\ y ~~ v ) -> y e. Fin ) |
57 |
|
pm2.27 |
|- ( y ~~ v -> ( ( y ~~ v -> ch ) -> ch ) ) |
58 |
57
|
adantl |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> ch ) ) |
59 |
56 58 6
|
sylsyld |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> th ) ) |
60 |
53 59
|
syl5 |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> th ) ) |
61 |
|
vex |
|- y e. _V |
62 |
|
snex |
|- { z } e. _V |
63 |
61 62
|
unex |
|- ( y u. { z } ) e. _V |
64 |
63 3
|
sbcie |
|- ( [. ( y u. { z } ) / x ]. ph <-> th ) |
65 |
60 64
|
syl6ibr |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) |
66 |
44 50 65
|
vtocl |
|- ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
67 |
|
dfsbcq |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( [. ( ( w \ { z } ) u. { z } ) / x ]. ph <-> [. w / x ]. ph ) ) |
68 |
67
|
imbi2d |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
69 |
66 68
|
syl5ib |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
70 |
38 42 69
|
3syl |
|- ( z e. w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
71 |
70
|
expd |
|- ( z e. w -> ( v e. _om -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
72 |
71
|
com12 |
|- ( v e. _om -> ( z e. w -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
73 |
72
|
adantr |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( z e. w -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
74 |
37 73
|
mpdd |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( z e. w -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
75 |
74
|
exlimdv |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( E. z z e. w -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
76 |
35 75
|
syl5bi |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( w =/= (/) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
77 |
76
|
ex |
|- ( v e. _om -> ( w ~~ suc v -> ( w =/= (/) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
78 |
34 77
|
mpdd |
|- ( v e. _om -> ( w ~~ suc v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
79 |
78
|
com23 |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
80 |
79
|
alrimdv |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
81 |
|
nfv |
|- F/ w ( x ~~ suc v -> ph ) |
82 |
|
nfv |
|- F/ x w ~~ suc v |
83 |
|
nfsbc1v |
|- F/ x [. w / x ]. ph |
84 |
82 83
|
nfim |
|- F/ x ( w ~~ suc v -> [. w / x ]. ph ) |
85 |
|
breq1 |
|- ( x = w -> ( x ~~ suc v <-> w ~~ suc v ) ) |
86 |
|
sbceq1a |
|- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
87 |
85 86
|
imbi12d |
|- ( x = w -> ( ( x ~~ suc v -> ph ) <-> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
88 |
81 84 87
|
cbvalv1 |
|- ( A. x ( x ~~ suc v -> ph ) <-> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) |
89 |
80 88
|
syl6ibr |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
90 |
10 13 16 20 89
|
finds1 |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
91 |
90
|
19.21bi |
|- ( w e. _om -> ( x ~~ w -> ph ) ) |
92 |
91
|
rexlimiv |
|- ( E. w e. _om x ~~ w -> ph ) |
93 |
7 92
|
sylbi |
|- ( x e. Fin -> ph ) |
94 |
4 93
|
vtoclga |
|- ( A e. Fin -> ta ) |