| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findcard3.1 |
|- ( x = y -> ( ph <-> ch ) ) |
| 2 |
|
findcard3.2 |
|- ( x = A -> ( ph <-> ta ) ) |
| 3 |
|
findcard3.3 |
|- ( y e. Fin -> ( A. x ( x C. y -> ph ) -> ch ) ) |
| 4 |
|
isfi |
|- ( A e. Fin <-> E. w e. _om A ~~ w ) |
| 5 |
|
nnon |
|- ( w e. _om -> w e. On ) |
| 6 |
|
eleq1w |
|- ( w = z -> ( w e. _om <-> z e. _om ) ) |
| 7 |
|
breq2 |
|- ( w = z -> ( x ~~ w <-> x ~~ z ) ) |
| 8 |
7
|
imbi1d |
|- ( w = z -> ( ( x ~~ w -> ph ) <-> ( x ~~ z -> ph ) ) ) |
| 9 |
8
|
albidv |
|- ( w = z -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ z -> ph ) ) ) |
| 10 |
6 9
|
imbi12d |
|- ( w = z -> ( ( w e. _om -> A. x ( x ~~ w -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) ) |
| 11 |
|
rspe |
|- ( ( w e. _om /\ y ~~ w ) -> E. w e. _om y ~~ w ) |
| 12 |
|
isfi |
|- ( y e. Fin <-> E. w e. _om y ~~ w ) |
| 13 |
11 12
|
sylibr |
|- ( ( w e. _om /\ y ~~ w ) -> y e. Fin ) |
| 14 |
|
19.21v |
|- ( A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
| 15 |
14
|
ralbii |
|- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
| 16 |
|
ralcom4 |
|- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
| 17 |
15 16
|
bitr3i |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
| 18 |
|
pssss |
|- ( x C. y -> x C_ y ) |
| 19 |
|
ssfi |
|- ( ( y e. Fin /\ x C_ y ) -> x e. Fin ) |
| 20 |
|
isfi |
|- ( x e. Fin <-> E. z e. _om x ~~ z ) |
| 21 |
19 20
|
sylib |
|- ( ( y e. Fin /\ x C_ y ) -> E. z e. _om x ~~ z ) |
| 22 |
13 18 21
|
syl2an |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. _om x ~~ z ) |
| 23 |
|
simprl |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. _om ) |
| 24 |
|
nnfi |
|- ( z e. _om -> z e. Fin ) |
| 25 |
|
ensymfib |
|- ( z e. Fin -> ( z ~~ x <-> x ~~ z ) ) |
| 26 |
24 25
|
syl |
|- ( z e. _om -> ( z ~~ x <-> x ~~ z ) ) |
| 27 |
26
|
biimpar |
|- ( ( z e. _om /\ x ~~ z ) -> z ~~ x ) |
| 28 |
27
|
adantl |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~~ x ) |
| 29 |
|
simplll |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> w e. _om ) |
| 30 |
|
php3 |
|- ( ( y e. Fin /\ x C. y ) -> x ~< y ) |
| 31 |
13 30
|
sylan |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> x ~< y ) |
| 32 |
31
|
adantr |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> x ~< y ) |
| 33 |
|
simpllr |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> y ~~ w ) |
| 34 |
|
endom |
|- ( y ~~ w -> y ~<_ w ) |
| 35 |
|
nnfi |
|- ( w e. _om -> w e. Fin ) |
| 36 |
|
domfi |
|- ( ( w e. Fin /\ y ~<_ w ) -> y e. Fin ) |
| 37 |
35 36
|
sylan |
|- ( ( w e. _om /\ y ~<_ w ) -> y e. Fin ) |
| 38 |
37
|
3adant2 |
|- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> y e. Fin ) |
| 39 |
|
sdomdom |
|- ( x ~< y -> x ~<_ y ) |
| 40 |
|
domfi |
|- ( ( y e. Fin /\ x ~<_ y ) -> x e. Fin ) |
| 41 |
39 40
|
sylan2 |
|- ( ( y e. Fin /\ x ~< y ) -> x e. Fin ) |
| 42 |
41
|
3adant3 |
|- ( ( y e. Fin /\ x ~< y /\ y ~<_ w ) -> x e. Fin ) |
| 43 |
38 42
|
syld3an1 |
|- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> x e. Fin ) |
| 44 |
|
sdomdomtrfi |
|- ( ( x e. Fin /\ x ~< y /\ y ~<_ w ) -> x ~< w ) |
| 45 |
43 44
|
syld3an1 |
|- ( ( w e. _om /\ x ~< y /\ y ~<_ w ) -> x ~< w ) |
| 46 |
34 45
|
syl3an3 |
|- ( ( w e. _om /\ x ~< y /\ y ~~ w ) -> x ~< w ) |
| 47 |
29 32 33 46
|
syl3anc |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> x ~< w ) |
| 48 |
|
endom |
|- ( z ~~ x -> z ~<_ x ) |
| 49 |
|
domsdomtrfi |
|- ( ( z e. Fin /\ z ~<_ x /\ x ~< w ) -> z ~< w ) |
| 50 |
24 49
|
syl3an1 |
|- ( ( z e. _om /\ z ~<_ x /\ x ~< w ) -> z ~< w ) |
| 51 |
48 50
|
syl3an2 |
|- ( ( z e. _om /\ z ~~ x /\ x ~< w ) -> z ~< w ) |
| 52 |
23 28 47 51
|
syl3anc |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~< w ) |
| 53 |
|
nnsdomo |
|- ( ( z e. _om /\ w e. _om ) -> ( z ~< w <-> z C. w ) ) |
| 54 |
|
nnord |
|- ( z e. _om -> Ord z ) |
| 55 |
|
nnord |
|- ( w e. _om -> Ord w ) |
| 56 |
|
ordelpss |
|- ( ( Ord z /\ Ord w ) -> ( z e. w <-> z C. w ) ) |
| 57 |
54 55 56
|
syl2an |
|- ( ( z e. _om /\ w e. _om ) -> ( z e. w <-> z C. w ) ) |
| 58 |
53 57
|
bitr4d |
|- ( ( z e. _om /\ w e. _om ) -> ( z ~< w <-> z e. w ) ) |
| 59 |
23 29 58
|
syl2anc |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> ( z ~< w <-> z e. w ) ) |
| 60 |
52 59
|
mpbid |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. w ) |
| 61 |
60
|
ex |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> z e. w ) ) |
| 62 |
|
simpr |
|- ( ( z e. _om /\ x ~~ z ) -> x ~~ z ) |
| 63 |
61 62
|
jca2 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> ( z e. w /\ x ~~ z ) ) ) |
| 64 |
63
|
reximdv2 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. _om x ~~ z -> E. z e. w x ~~ z ) ) |
| 65 |
22 64
|
mpd |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. w x ~~ z ) |
| 66 |
|
r19.29 |
|- ( ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) /\ E. z e. w x ~~ z ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) |
| 67 |
66
|
expcom |
|- ( E. z e. w x ~~ z -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 68 |
65 67
|
syl |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 69 |
|
ordom |
|- Ord _om |
| 70 |
|
ordelss |
|- ( ( Ord _om /\ w e. _om ) -> w C_ _om ) |
| 71 |
69 70
|
mpan |
|- ( w e. _om -> w C_ _om ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> w C_ _om ) |
| 73 |
72
|
sseld |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> z e. _om ) ) |
| 74 |
|
pm2.27 |
|- ( z e. _om -> ( ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x ~~ z -> ph ) ) ) |
| 75 |
74
|
impd |
|- ( z e. _om -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 76 |
73 75
|
syl6 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) ) |
| 77 |
76
|
rexlimdv |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 78 |
68 77
|
syld |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) |
| 79 |
78
|
ex |
|- ( ( w e. _om /\ y ~~ w ) -> ( x C. y -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) ) |
| 80 |
79
|
com23 |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x C. y -> ph ) ) ) |
| 81 |
80
|
alimdv |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 82 |
17 81
|
biimtrid |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 83 |
13 82 3
|
sylsyld |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ch ) ) |
| 84 |
83
|
impancom |
|- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> ( y ~~ w -> ch ) ) |
| 85 |
84
|
alrimiv |
|- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> A. y ( y ~~ w -> ch ) ) |
| 86 |
85
|
expcom |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. y ( y ~~ w -> ch ) ) ) |
| 87 |
|
breq1 |
|- ( x = y -> ( x ~~ w <-> y ~~ w ) ) |
| 88 |
87 1
|
imbi12d |
|- ( x = y -> ( ( x ~~ w -> ph ) <-> ( y ~~ w -> ch ) ) ) |
| 89 |
88
|
cbvalvw |
|- ( A. x ( x ~~ w -> ph ) <-> A. y ( y ~~ w -> ch ) ) |
| 90 |
86 89
|
imbitrrdi |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 91 |
90
|
a1i |
|- ( w e. On -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) ) |
| 92 |
10 91
|
tfis2 |
|- ( w e. On -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 93 |
5 92
|
mpcom |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 94 |
93
|
rgen |
|- A. w e. _om A. x ( x ~~ w -> ph ) |
| 95 |
|
r19.29 |
|- ( ( A. w e. _om A. x ( x ~~ w -> ph ) /\ E. w e. _om A ~~ w ) -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 96 |
94 95
|
mpan |
|- ( E. w e. _om A ~~ w -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 97 |
4 96
|
sylbi |
|- ( A e. Fin -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 98 |
|
breq1 |
|- ( x = A -> ( x ~~ w <-> A ~~ w ) ) |
| 99 |
98 2
|
imbi12d |
|- ( x = A -> ( ( x ~~ w -> ph ) <-> ( A ~~ w -> ta ) ) ) |
| 100 |
99
|
spcgv |
|- ( A e. Fin -> ( A. x ( x ~~ w -> ph ) -> ( A ~~ w -> ta ) ) ) |
| 101 |
100
|
impd |
|- ( A e. Fin -> ( ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 102 |
101
|
rexlimdvw |
|- ( A e. Fin -> ( E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 103 |
97 102
|
mpd |
|- ( A e. Fin -> ta ) |