| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findcard3OLD.1 |
|- ( x = y -> ( ph <-> ch ) ) |
| 2 |
|
findcard3OLD.2 |
|- ( x = A -> ( ph <-> ta ) ) |
| 3 |
|
findcard3OLD.3 |
|- ( y e. Fin -> ( A. x ( x C. y -> ph ) -> ch ) ) |
| 4 |
|
isfi |
|- ( A e. Fin <-> E. w e. _om A ~~ w ) |
| 5 |
|
nnon |
|- ( w e. _om -> w e. On ) |
| 6 |
|
eleq1w |
|- ( w = z -> ( w e. _om <-> z e. _om ) ) |
| 7 |
|
breq2 |
|- ( w = z -> ( x ~~ w <-> x ~~ z ) ) |
| 8 |
7
|
imbi1d |
|- ( w = z -> ( ( x ~~ w -> ph ) <-> ( x ~~ z -> ph ) ) ) |
| 9 |
8
|
albidv |
|- ( w = z -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ z -> ph ) ) ) |
| 10 |
6 9
|
imbi12d |
|- ( w = z -> ( ( w e. _om -> A. x ( x ~~ w -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) ) |
| 11 |
|
rspe |
|- ( ( w e. _om /\ y ~~ w ) -> E. w e. _om y ~~ w ) |
| 12 |
|
isfi |
|- ( y e. Fin <-> E. w e. _om y ~~ w ) |
| 13 |
11 12
|
sylibr |
|- ( ( w e. _om /\ y ~~ w ) -> y e. Fin ) |
| 14 |
|
19.21v |
|- ( A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
| 15 |
14
|
ralbii |
|- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) |
| 16 |
|
ralcom4 |
|- ( A. z e. w A. x ( z e. _om -> ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
| 17 |
15 16
|
bitr3i |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) <-> A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) ) |
| 18 |
|
pssss |
|- ( x C. y -> x C_ y ) |
| 19 |
|
ssfi |
|- ( ( y e. Fin /\ x C_ y ) -> x e. Fin ) |
| 20 |
|
isfi |
|- ( x e. Fin <-> E. z e. _om x ~~ z ) |
| 21 |
19 20
|
sylib |
|- ( ( y e. Fin /\ x C_ y ) -> E. z e. _om x ~~ z ) |
| 22 |
13 18 21
|
syl2an |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. _om x ~~ z ) |
| 23 |
|
ensym |
|- ( x ~~ z -> z ~~ x ) |
| 24 |
23
|
ad2antll |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~~ x ) |
| 25 |
|
php3 |
|- ( ( y e. Fin /\ x C. y ) -> x ~< y ) |
| 26 |
13 25
|
sylan |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> x ~< y ) |
| 27 |
|
simpllr |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> y ~~ w ) |
| 28 |
|
sdomentr |
|- ( ( x ~< y /\ y ~~ w ) -> x ~< w ) |
| 29 |
26 27 28
|
syl2an2r |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> x ~< w ) |
| 30 |
|
ensdomtr |
|- ( ( z ~~ x /\ x ~< w ) -> z ~< w ) |
| 31 |
24 29 30
|
syl2anc |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z ~< w ) |
| 32 |
|
nnon |
|- ( z e. _om -> z e. On ) |
| 33 |
32
|
ad2antrl |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. On ) |
| 34 |
5
|
ad3antrrr |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> w e. On ) |
| 35 |
|
sdomel |
|- ( ( z e. On /\ w e. On ) -> ( z ~< w -> z e. w ) ) |
| 36 |
33 34 35
|
syl2anc |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> ( z ~< w -> z e. w ) ) |
| 37 |
31 36
|
mpd |
|- ( ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) /\ ( z e. _om /\ x ~~ z ) ) -> z e. w ) |
| 38 |
37
|
ex |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> z e. w ) ) |
| 39 |
|
simpr |
|- ( ( z e. _om /\ x ~~ z ) -> x ~~ z ) |
| 40 |
38 39
|
jca2 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( ( z e. _om /\ x ~~ z ) -> ( z e. w /\ x ~~ z ) ) ) |
| 41 |
40
|
reximdv2 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. _om x ~~ z -> E. z e. w x ~~ z ) ) |
| 42 |
22 41
|
mpd |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> E. z e. w x ~~ z ) |
| 43 |
|
r19.29 |
|- ( ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) /\ E. z e. w x ~~ z ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) |
| 44 |
43
|
expcom |
|- ( E. z e. w x ~~ z -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 45 |
42 44
|
syl |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) ) ) |
| 46 |
|
ordom |
|- Ord _om |
| 47 |
|
ordelss |
|- ( ( Ord _om /\ w e. _om ) -> w C_ _om ) |
| 48 |
46 47
|
mpan |
|- ( w e. _om -> w C_ _om ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> w C_ _om ) |
| 50 |
49
|
sseld |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> z e. _om ) ) |
| 51 |
|
pm2.27 |
|- ( z e. _om -> ( ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x ~~ z -> ph ) ) ) |
| 52 |
51
|
impd |
|- ( z e. _om -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 53 |
50 52
|
syl6 |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( z e. w -> ( ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) ) |
| 54 |
53
|
rexlimdv |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( E. z e. w ( ( z e. _om -> ( x ~~ z -> ph ) ) /\ x ~~ z ) -> ph ) ) |
| 55 |
45 54
|
syld |
|- ( ( ( w e. _om /\ y ~~ w ) /\ x C. y ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) |
| 56 |
55
|
ex |
|- ( ( w e. _om /\ y ~~ w ) -> ( x C. y -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ph ) ) ) |
| 57 |
56
|
com23 |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> ( x C. y -> ph ) ) ) |
| 58 |
57
|
alimdv |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. x A. z e. w ( z e. _om -> ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 59 |
17 58
|
biimtrid |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> A. x ( x C. y -> ph ) ) ) |
| 60 |
13 59 3
|
sylsyld |
|- ( ( w e. _om /\ y ~~ w ) -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ch ) ) |
| 61 |
60
|
impancom |
|- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> ( y ~~ w -> ch ) ) |
| 62 |
61
|
alrimiv |
|- ( ( w e. _om /\ A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) ) -> A. y ( y ~~ w -> ch ) ) |
| 63 |
62
|
expcom |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. y ( y ~~ w -> ch ) ) ) |
| 64 |
|
breq1 |
|- ( x = y -> ( x ~~ w <-> y ~~ w ) ) |
| 65 |
64 1
|
imbi12d |
|- ( x = y -> ( ( x ~~ w -> ph ) <-> ( y ~~ w -> ch ) ) ) |
| 66 |
65
|
cbvalvw |
|- ( A. x ( x ~~ w -> ph ) <-> A. y ( y ~~ w -> ch ) ) |
| 67 |
63 66
|
imbitrrdi |
|- ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 68 |
67
|
a1i |
|- ( w e. On -> ( A. z e. w ( z e. _om -> A. x ( x ~~ z -> ph ) ) -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) ) |
| 69 |
10 68
|
tfis2 |
|- ( w e. On -> ( w e. _om -> A. x ( x ~~ w -> ph ) ) ) |
| 70 |
5 69
|
mpcom |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 71 |
70
|
rgen |
|- A. w e. _om A. x ( x ~~ w -> ph ) |
| 72 |
|
r19.29 |
|- ( ( A. w e. _om A. x ( x ~~ w -> ph ) /\ E. w e. _om A ~~ w ) -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 73 |
71 72
|
mpan |
|- ( E. w e. _om A ~~ w -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 74 |
4 73
|
sylbi |
|- ( A e. Fin -> E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) ) |
| 75 |
|
breq1 |
|- ( x = A -> ( x ~~ w <-> A ~~ w ) ) |
| 76 |
75 2
|
imbi12d |
|- ( x = A -> ( ( x ~~ w -> ph ) <-> ( A ~~ w -> ta ) ) ) |
| 77 |
76
|
spcgv |
|- ( A e. Fin -> ( A. x ( x ~~ w -> ph ) -> ( A ~~ w -> ta ) ) ) |
| 78 |
77
|
impd |
|- ( A e. Fin -> ( ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 79 |
78
|
rexlimdvw |
|- ( A e. Fin -> ( E. w e. _om ( A. x ( x ~~ w -> ph ) /\ A ~~ w ) -> ta ) ) |
| 80 |
74 79
|
mpd |
|- ( A e. Fin -> ta ) |