| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finds.1 |  |-  ( x = (/) -> ( ph <-> ps ) ) | 
						
							| 2 |  | finds.2 |  |-  ( x = y -> ( ph <-> ch ) ) | 
						
							| 3 |  | finds.3 |  |-  ( x = suc y -> ( ph <-> th ) ) | 
						
							| 4 |  | finds.4 |  |-  ( x = A -> ( ph <-> ta ) ) | 
						
							| 5 |  | finds.5 |  |-  ps | 
						
							| 6 |  | finds.6 |  |-  ( y e. _om -> ( ch -> th ) ) | 
						
							| 7 |  | 0ex |  |-  (/) e. _V | 
						
							| 8 | 7 1 | elab |  |-  ( (/) e. { x | ph } <-> ps ) | 
						
							| 9 | 5 8 | mpbir |  |-  (/) e. { x | ph } | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 | 10 2 | elab |  |-  ( y e. { x | ph } <-> ch ) | 
						
							| 12 | 10 | sucex |  |-  suc y e. _V | 
						
							| 13 | 12 3 | elab |  |-  ( suc y e. { x | ph } <-> th ) | 
						
							| 14 | 6 11 13 | 3imtr4g |  |-  ( y e. _om -> ( y e. { x | ph } -> suc y e. { x | ph } ) ) | 
						
							| 15 | 14 | rgen |  |-  A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) | 
						
							| 16 |  | peano5 |  |-  ( ( (/) e. { x | ph } /\ A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) ) -> _om C_ { x | ph } ) | 
						
							| 17 | 9 15 16 | mp2an |  |-  _om C_ { x | ph } | 
						
							| 18 | 17 | sseli |  |-  ( A e. _om -> A e. { x | ph } ) | 
						
							| 19 | 4 | elabg |  |-  ( A e. _om -> ( A e. { x | ph } <-> ta ) ) | 
						
							| 20 | 18 19 | mpbid |  |-  ( A e. _om -> ta ) |