Step |
Hyp |
Ref |
Expression |
1 |
|
finds.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
2 |
|
finds.2 |
|- ( x = y -> ( ph <-> ch ) ) |
3 |
|
finds.3 |
|- ( x = suc y -> ( ph <-> th ) ) |
4 |
|
finds.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
finds.5 |
|- ps |
6 |
|
finds.6 |
|- ( y e. _om -> ( ch -> th ) ) |
7 |
|
0ex |
|- (/) e. _V |
8 |
7 1
|
elab |
|- ( (/) e. { x | ph } <-> ps ) |
9 |
5 8
|
mpbir |
|- (/) e. { x | ph } |
10 |
|
vex |
|- y e. _V |
11 |
10 2
|
elab |
|- ( y e. { x | ph } <-> ch ) |
12 |
10
|
sucex |
|- suc y e. _V |
13 |
12 3
|
elab |
|- ( suc y e. { x | ph } <-> th ) |
14 |
6 11 13
|
3imtr4g |
|- ( y e. _om -> ( y e. { x | ph } -> suc y e. { x | ph } ) ) |
15 |
14
|
rgen |
|- A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) |
16 |
|
peano5 |
|- ( ( (/) e. { x | ph } /\ A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) ) -> _om C_ { x | ph } ) |
17 |
9 15 16
|
mp2an |
|- _om C_ { x | ph } |
18 |
17
|
sseli |
|- ( A e. _om -> A e. { x | ph } ) |
19 |
4
|
elabg |
|- ( A e. _om -> ( A e. { x | ph } <-> ta ) ) |
20 |
18 19
|
mpbid |
|- ( A e. _om -> ta ) |