| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finds2.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
| 2 |
|
finds2.2 |
|- ( x = y -> ( ph <-> ch ) ) |
| 3 |
|
finds2.3 |
|- ( x = suc y -> ( ph <-> th ) ) |
| 4 |
|
finds2.4 |
|- ( ta -> ps ) |
| 5 |
|
finds2.5 |
|- ( y e. _om -> ( ta -> ( ch -> th ) ) ) |
| 6 |
|
0ex |
|- (/) e. _V |
| 7 |
1
|
imbi2d |
|- ( x = (/) -> ( ( ta -> ph ) <-> ( ta -> ps ) ) ) |
| 8 |
6 7
|
elab |
|- ( (/) e. { x | ( ta -> ph ) } <-> ( ta -> ps ) ) |
| 9 |
4 8
|
mpbir |
|- (/) e. { x | ( ta -> ph ) } |
| 10 |
5
|
a2d |
|- ( y e. _om -> ( ( ta -> ch ) -> ( ta -> th ) ) ) |
| 11 |
|
vex |
|- y e. _V |
| 12 |
2
|
imbi2d |
|- ( x = y -> ( ( ta -> ph ) <-> ( ta -> ch ) ) ) |
| 13 |
11 12
|
elab |
|- ( y e. { x | ( ta -> ph ) } <-> ( ta -> ch ) ) |
| 14 |
11
|
sucex |
|- suc y e. _V |
| 15 |
3
|
imbi2d |
|- ( x = suc y -> ( ( ta -> ph ) <-> ( ta -> th ) ) ) |
| 16 |
14 15
|
elab |
|- ( suc y e. { x | ( ta -> ph ) } <-> ( ta -> th ) ) |
| 17 |
10 13 16
|
3imtr4g |
|- ( y e. _om -> ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) ) |
| 18 |
17
|
rgen |
|- A. y e. _om ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) |
| 19 |
|
peano5 |
|- ( ( (/) e. { x | ( ta -> ph ) } /\ A. y e. _om ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) ) -> _om C_ { x | ( ta -> ph ) } ) |
| 20 |
9 18 19
|
mp2an |
|- _om C_ { x | ( ta -> ph ) } |
| 21 |
20
|
sseli |
|- ( x e. _om -> x e. { x | ( ta -> ph ) } ) |
| 22 |
|
abid |
|- ( x e. { x | ( ta -> ph ) } <-> ( ta -> ph ) ) |
| 23 |
21 22
|
sylib |
|- ( x e. _om -> ( ta -> ph ) ) |