Metamath Proof Explorer


Theorem fineqv

Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)

Ref Expression
Assertion fineqv
|- ( -. _om e. _V <-> Fin = _V )

Proof

Step Hyp Ref Expression
1 ssv
 |-  Fin C_ _V
2 1 a1i
 |-  ( -. _om e. _V -> Fin C_ _V )
3 vex
 |-  a e. _V
4 fineqvlem
 |-  ( ( a e. _V /\ -. a e. Fin ) -> _om ~<_ ~P ~P a )
5 3 4 mpan
 |-  ( -. a e. Fin -> _om ~<_ ~P ~P a )
6 reldom
 |-  Rel ~<_
7 6 brrelex1i
 |-  ( _om ~<_ ~P ~P a -> _om e. _V )
8 5 7 syl
 |-  ( -. a e. Fin -> _om e. _V )
9 8 con1i
 |-  ( -. _om e. _V -> a e. Fin )
10 9 a1d
 |-  ( -. _om e. _V -> ( a e. _V -> a e. Fin ) )
11 10 ssrdv
 |-  ( -. _om e. _V -> _V C_ Fin )
12 2 11 eqssd
 |-  ( -. _om e. _V -> Fin = _V )
13 ominf
 |-  -. _om e. Fin
14 eleq2
 |-  ( Fin = _V -> ( _om e. Fin <-> _om e. _V ) )
15 13 14 mtbii
 |-  ( Fin = _V -> -. _om e. _V )
16 12 15 impbii
 |-  ( -. _om e. _V <-> Fin = _V )