Metamath Proof Explorer


Theorem finngch

Description: The exclusion of finite sets from consideration in df-gch is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015)

Ref Expression
Assertion finngch
|- ( ( A e. Fin /\ 1o ~< A ) -> ( A ~< ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) )

Proof

Step Hyp Ref Expression
1 fin12
 |-  ( A e. Fin -> A e. Fin2 )
2 fin23
 |-  ( A e. Fin2 -> A e. Fin3 )
3 fin34
 |-  ( A e. Fin3 -> A e. Fin4 )
4 1 2 3 3syl
 |-  ( A e. Fin -> A e. Fin4 )
5 isfin4p1
 |-  ( A e. Fin4 <-> A ~< ( A |_| 1o ) )
6 4 5 sylib
 |-  ( A e. Fin -> A ~< ( A |_| 1o ) )
7 canthp1
 |-  ( 1o ~< A -> ( A |_| 1o ) ~< ~P A )
8 6 7 anim12i
 |-  ( ( A e. Fin /\ 1o ~< A ) -> ( A ~< ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) )