Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- OrdIso ( R , A ) = OrdIso ( R , A ) |
2 |
1
|
oiexg |
|- ( A e. Fin -> OrdIso ( R , A ) e. _V ) |
3 |
2
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) e. _V ) |
4 |
|
simpr |
|- ( ( R Or A /\ A e. Fin ) -> A e. Fin ) |
5 |
|
wofi |
|- ( ( R Or A /\ A e. Fin ) -> R We A ) |
6 |
1
|
oiiso |
|- ( ( A e. Fin /\ R We A ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
8 |
1
|
oien |
|- ( ( A e. Fin /\ R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
9 |
4 5 8
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ A ) |
10 |
|
ficardid |
|- ( A e. Fin -> ( card ` A ) ~~ A ) |
11 |
10
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) ~~ A ) |
12 |
11
|
ensymd |
|- ( ( R Or A /\ A e. Fin ) -> A ~~ ( card ` A ) ) |
13 |
|
entr |
|- ( ( dom OrdIso ( R , A ) ~~ A /\ A ~~ ( card ` A ) ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) |
14 |
9 12 13
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) |
15 |
1
|
oion |
|- ( A e. Fin -> dom OrdIso ( R , A ) e. On ) |
16 |
15
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) e. On ) |
17 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
18 |
17
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) e. _om ) |
19 |
|
onomeneq |
|- ( ( dom OrdIso ( R , A ) e. On /\ ( card ` A ) e. _om ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) |
20 |
16 18 19
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) |
21 |
14 20
|
mpbid |
|- ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) = ( card ` A ) ) |
22 |
|
isoeq4 |
|- ( dom OrdIso ( R , A ) = ( card ` A ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
23 |
21 22
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
24 |
7 23
|
mpbid |
|- ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) |
25 |
|
isoeq1 |
|- ( f = OrdIso ( R , A ) -> ( f Isom _E , R ( ( card ` A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) |
26 |
3 24 25
|
spcedv |
|- ( ( R Or A /\ A e. Fin ) -> E. f f Isom _E , R ( ( card ` A ) , A ) ) |
27 |
|
wemoiso2 |
|- ( R We A -> E* f f Isom _E , R ( ( card ` A ) , A ) ) |
28 |
5 27
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> E* f f Isom _E , R ( ( card ` A ) , A ) ) |
29 |
|
df-eu |
|- ( E! f f Isom _E , R ( ( card ` A ) , A ) <-> ( E. f f Isom _E , R ( ( card ` A ) , A ) /\ E* f f Isom _E , R ( ( card ` A ) , A ) ) ) |
30 |
26 28 29
|
sylanbrc |
|- ( ( R Or A /\ A e. Fin ) -> E! f f Isom _E , R ( ( card ` A ) , A ) ) |