| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  OrdIso ( R , A ) = OrdIso ( R , A ) | 
						
							| 2 | 1 | oiexg |  |-  ( A e. Fin -> OrdIso ( R , A ) e. _V ) | 
						
							| 3 | 2 | adantl |  |-  ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) e. _V ) | 
						
							| 4 |  | simpr |  |-  ( ( R Or A /\ A e. Fin ) -> A e. Fin ) | 
						
							| 5 |  | wofi |  |-  ( ( R Or A /\ A e. Fin ) -> R We A ) | 
						
							| 6 | 1 | oiiso |  |-  ( ( A e. Fin /\ R We A ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) | 
						
							| 8 | 1 | oien |  |-  ( ( A e. Fin /\ R We A ) -> dom OrdIso ( R , A ) ~~ A ) | 
						
							| 9 | 4 5 8 | syl2anc |  |-  ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ A ) | 
						
							| 10 |  | ficardid |  |-  ( A e. Fin -> ( card ` A ) ~~ A ) | 
						
							| 11 | 10 | adantl |  |-  ( ( R Or A /\ A e. Fin ) -> ( card ` A ) ~~ A ) | 
						
							| 12 | 11 | ensymd |  |-  ( ( R Or A /\ A e. Fin ) -> A ~~ ( card ` A ) ) | 
						
							| 13 |  | entr |  |-  ( ( dom OrdIso ( R , A ) ~~ A /\ A ~~ ( card ` A ) ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) | 
						
							| 14 | 9 12 13 | syl2anc |  |-  ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) ~~ ( card ` A ) ) | 
						
							| 15 | 1 | oion |  |-  ( A e. Fin -> dom OrdIso ( R , A ) e. On ) | 
						
							| 16 | 15 | adantl |  |-  ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) e. On ) | 
						
							| 17 |  | ficardom |  |-  ( A e. Fin -> ( card ` A ) e. _om ) | 
						
							| 18 | 17 | adantl |  |-  ( ( R Or A /\ A e. Fin ) -> ( card ` A ) e. _om ) | 
						
							| 19 |  | onomeneq |  |-  ( ( dom OrdIso ( R , A ) e. On /\ ( card ` A ) e. _om ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) | 
						
							| 20 | 16 18 19 | syl2anc |  |-  ( ( R Or A /\ A e. Fin ) -> ( dom OrdIso ( R , A ) ~~ ( card ` A ) <-> dom OrdIso ( R , A ) = ( card ` A ) ) ) | 
						
							| 21 | 14 20 | mpbid |  |-  ( ( R Or A /\ A e. Fin ) -> dom OrdIso ( R , A ) = ( card ` A ) ) | 
						
							| 22 |  | isoeq4 |  |-  ( dom OrdIso ( R , A ) = ( card ` A ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( R Or A /\ A e. Fin ) -> ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) | 
						
							| 24 | 7 23 | mpbid |  |-  ( ( R Or A /\ A e. Fin ) -> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) | 
						
							| 25 |  | isoeq1 |  |-  ( f = OrdIso ( R , A ) -> ( f Isom _E , R ( ( card ` A ) , A ) <-> OrdIso ( R , A ) Isom _E , R ( ( card ` A ) , A ) ) ) | 
						
							| 26 | 3 24 25 | spcedv |  |-  ( ( R Or A /\ A e. Fin ) -> E. f f Isom _E , R ( ( card ` A ) , A ) ) | 
						
							| 27 |  | wemoiso2 |  |-  ( R We A -> E* f f Isom _E , R ( ( card ` A ) , A ) ) | 
						
							| 28 | 5 27 | syl |  |-  ( ( R Or A /\ A e. Fin ) -> E* f f Isom _E , R ( ( card ` A ) , A ) ) | 
						
							| 29 |  | df-eu |  |-  ( E! f f Isom _E , R ( ( card ` A ) , A ) <-> ( E. f f Isom _E , R ( ( card ` A ) , A ) /\ E* f f Isom _E , R ( ( card ` A ) , A ) ) ) | 
						
							| 30 | 26 28 29 | sylanbrc |  |-  ( ( R Or A /\ A e. Fin ) -> E! f f Isom _E , R ( ( card ` A ) , A ) ) |