| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finnzfsuppd.1 |  |-  ( ph -> F e. V ) | 
						
							| 2 |  | finnzfsuppd.2 |  |-  ( ph -> F Fn D ) | 
						
							| 3 |  | finnzfsuppd.3 |  |-  ( ph -> Z e. U ) | 
						
							| 4 |  | finnzfsuppd.4 |  |-  ( ph -> A e. Fin ) | 
						
							| 5 |  | finnzfsuppd.5 |  |-  ( ( ph /\ x e. D ) -> ( x e. A \/ ( F ` x ) = Z ) ) | 
						
							| 6 | 1 2 | fndmexd |  |-  ( ph -> D e. _V ) | 
						
							| 7 |  | elsuppfn |  |-  ( ( F Fn D /\ D e. _V /\ Z e. U ) -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) | 
						
							| 8 | 2 6 3 7 | syl3anc |  |-  ( ph -> ( x e. ( F supp Z ) <-> ( x e. D /\ ( F ` x ) =/= Z ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. D /\ ( F ` x ) =/= Z ) ) | 
						
							| 10 | 9 | simpld |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> x e. D ) | 
						
							| 11 | 10 5 | syldan |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> ( x e. A \/ ( F ` x ) = Z ) ) | 
						
							| 12 | 9 | simprd |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> ( F ` x ) =/= Z ) | 
						
							| 13 | 12 | neneqd |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> -. ( F ` x ) = Z ) | 
						
							| 14 | 11 13 | olcnd |  |-  ( ( ph /\ x e. ( F supp Z ) ) -> x e. A ) | 
						
							| 15 | 14 | ex |  |-  ( ph -> ( x e. ( F supp Z ) -> x e. A ) ) | 
						
							| 16 | 15 | ssrdv |  |-  ( ph -> ( F supp Z ) C_ A ) | 
						
							| 17 | 4 16 | ssfid |  |-  ( ph -> ( F supp Z ) e. Fin ) | 
						
							| 18 |  | fnfun |  |-  ( F Fn D -> Fun F ) | 
						
							| 19 | 2 18 | syl |  |-  ( ph -> Fun F ) | 
						
							| 20 |  | funisfsupp |  |-  ( ( Fun F /\ F e. V /\ Z e. U ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | 
						
							| 21 | 19 1 3 20 | syl3anc |  |-  ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | 
						
							| 22 | 17 21 | mpbird |  |-  ( ph -> F finSupp Z ) |