Metamath Proof Explorer


Theorem finrusgrfusgr

Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021)

Ref Expression
Hypothesis finrusgrfusgr.v
|- V = ( Vtx ` G )
Assertion finrusgrfusgr
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph )

Proof

Step Hyp Ref Expression
1 finrusgrfusgr.v
 |-  V = ( Vtx ` G )
2 rusgrusgr
 |-  ( G RegUSGraph K -> G e. USGraph )
3 2 anim1i
 |-  ( ( G RegUSGraph K /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) )
4 1 isfusgr
 |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) )
5 3 4 sylibr
 |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph )