Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | finrusgrfusgr.v | |- V = ( Vtx ` G ) |
|
Assertion | finrusgrfusgr | |- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finrusgrfusgr.v | |- V = ( Vtx ` G ) |
|
2 | rusgrusgr | |- ( G RegUSGraph K -> G e. USGraph ) |
|
3 | 2 | anim1i | |- ( ( G RegUSGraph K /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) ) |
4 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
5 | 3 4 | sylibr | |- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |