Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in Bollobas p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th ) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum sum_ over an arbitrary set).
I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumvtxdg2size.v | |- V = ( Vtx ` G ) |
|
sumvtxdg2size.i | |- I = ( iEdg ` G ) |
||
sumvtxdg2size.d | |- D = ( VtxDeg ` G ) |
||
Assertion | finsumvtxdg2size | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumvtxdg2size.v | |- V = ( Vtx ` G ) |
|
2 | sumvtxdg2size.i | |- I = ( iEdg ` G ) |
|
3 | sumvtxdg2size.d | |- D = ( VtxDeg ` G ) |
|
4 | upgrop | |- ( G e. UPGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph ) |
|
5 | fvex | |- ( iEdg ` G ) e. _V |
|
6 | fvex | |- ( iEdg ` <. k , e >. ) e. _V |
|
7 | 6 | resex | |- ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. _V |
8 | eleq1 | |- ( e = ( iEdg ` G ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
|
9 | 8 | adantl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
10 | simpl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> k = ( Vtx ` G ) ) |
|
11 | oveq12 | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( k VtxDeg e ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
|
12 | 11 | fveq1d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( ( k VtxDeg e ) ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
13 | 12 | adantr | |- ( ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) /\ v e. k ) -> ( ( k VtxDeg e ) ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
14 | 10 13 | sumeq12dv | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
15 | fveq2 | |- ( e = ( iEdg ` G ) -> ( # ` e ) = ( # ` ( iEdg ` G ) ) ) |
|
16 | 15 | oveq2d | |- ( e = ( iEdg ` G ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
17 | 16 | adantl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
18 | 14 17 | eqeq12d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
19 | 9 18 | imbi12d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) <-> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
20 | eleq1 | |- ( e = f -> ( e e. Fin <-> f e. Fin ) ) |
|
21 | 20 | adantl | |- ( ( k = w /\ e = f ) -> ( e e. Fin <-> f e. Fin ) ) |
22 | simpl | |- ( ( k = w /\ e = f ) -> k = w ) |
|
23 | oveq12 | |- ( ( k = w /\ e = f ) -> ( k VtxDeg e ) = ( w VtxDeg f ) ) |
|
24 | df-ov | |- ( w VtxDeg f ) = ( VtxDeg ` <. w , f >. ) |
|
25 | 23 24 | eqtrdi | |- ( ( k = w /\ e = f ) -> ( k VtxDeg e ) = ( VtxDeg ` <. w , f >. ) ) |
26 | 25 | fveq1d | |- ( ( k = w /\ e = f ) -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
27 | 26 | adantr | |- ( ( ( k = w /\ e = f ) /\ v e. k ) -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
28 | 22 27 | sumeq12dv | |- ( ( k = w /\ e = f ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
29 | fveq2 | |- ( e = f -> ( # ` e ) = ( # ` f ) ) |
|
30 | 29 | oveq2d | |- ( e = f -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` f ) ) ) |
31 | 30 | adantl | |- ( ( k = w /\ e = f ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` f ) ) ) |
32 | 28 31 | eqeq12d | |- ( ( k = w /\ e = f ) -> ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) ) |
33 | 21 32 | imbi12d | |- ( ( k = w /\ e = f ) -> ( ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) <-> ( f e. Fin -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) ) ) |
34 | vex | |- k e. _V |
|
35 | vex | |- e e. _V |
|
36 | 34 35 | opvtxfvi | |- ( Vtx ` <. k , e >. ) = k |
37 | 36 | eqcomi | |- k = ( Vtx ` <. k , e >. ) |
38 | eqid | |- ( iEdg ` <. k , e >. ) = ( iEdg ` <. k , e >. ) |
|
39 | eqid | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } |
|
40 | eqid | |- <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. = <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. |
|
41 | 37 38 39 40 | upgrres | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. e. UPGraph ) |
42 | eleq1 | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( f e. Fin <-> ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin ) ) |
|
43 | 42 | adantl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( f e. Fin <-> ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin ) ) |
44 | simpl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> w = ( k \ { n } ) ) |
|
45 | opeq12 | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> <. w , f >. = <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) |
|
46 | 45 | fveq2d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( VtxDeg ` <. w , f >. ) = ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ) |
47 | 46 | fveq1d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( ( VtxDeg ` <. w , f >. ) ` v ) = ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
48 | 47 | adantr | |- ( ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) /\ v e. w ) -> ( ( VtxDeg ` <. w , f >. ) ` v ) = ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
49 | 44 48 | sumeq12dv | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
50 | fveq2 | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( # ` f ) = ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) |
|
51 | 50 | oveq2d | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( 2 x. ( # ` f ) ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) |
52 | 51 | adantl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( 2 x. ( # ` f ) ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) |
53 | 49 52 | eqeq12d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) <-> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) |
54 | 43 53 | imbi12d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( ( f e. Fin -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) <-> ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) ) |
55 | hasheq0 | |- ( k e. _V -> ( ( # ` k ) = 0 <-> k = (/) ) ) |
|
56 | 55 | elv | |- ( ( # ` k ) = 0 <-> k = (/) ) |
57 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
58 | 57 | a1i | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( 2 x. 0 ) = 0 ) |
59 | 34 35 | opiedgfvi | |- ( iEdg ` <. k , e >. ) = e |
60 | 59 | eqcomi | |- e = ( iEdg ` <. k , e >. ) |
61 | upgruhgr | |- ( <. k , e >. e. UPGraph -> <. k , e >. e. UHGraph ) |
|
62 | 61 | adantr | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> <. k , e >. e. UHGraph ) |
63 | 37 | eqeq1i | |- ( k = (/) <-> ( Vtx ` <. k , e >. ) = (/) ) |
64 | uhgr0vb | |- ( ( <. k , e >. e. UPGraph /\ ( Vtx ` <. k , e >. ) = (/) ) -> ( <. k , e >. e. UHGraph <-> ( iEdg ` <. k , e >. ) = (/) ) ) |
|
65 | 63 64 | sylan2b | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( <. k , e >. e. UHGraph <-> ( iEdg ` <. k , e >. ) = (/) ) ) |
66 | 62 65 | mpbid | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( iEdg ` <. k , e >. ) = (/) ) |
67 | 60 66 | syl5eq | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> e = (/) ) |
68 | hasheq0 | |- ( e e. _V -> ( ( # ` e ) = 0 <-> e = (/) ) ) |
|
69 | 68 | elv | |- ( ( # ` e ) = 0 <-> e = (/) ) |
70 | 67 69 | sylibr | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( # ` e ) = 0 ) |
71 | 70 | oveq2d | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( 2 x. ( # ` e ) ) = ( 2 x. 0 ) ) |
72 | sumeq1 | |- ( k = (/) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. (/) ( ( k VtxDeg e ) ` v ) ) |
|
73 | sum0 | |- sum_ v e. (/) ( ( k VtxDeg e ) ` v ) = 0 |
|
74 | 72 73 | eqtrdi | |- ( k = (/) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = 0 ) |
75 | 74 | adantl | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = 0 ) |
76 | 58 71 75 | 3eqtr4rd | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) |
77 | 56 76 | sylan2b | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = 0 ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) |
78 | 77 | a1d | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = 0 ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
79 | eleq1 | |- ( ( y + 1 ) = ( # ` k ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
|
80 | 79 | eqcoms | |- ( ( # ` k ) = ( y + 1 ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
81 | 80 | 3ad2ant2 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
82 | hashclb | |- ( k e. _V -> ( k e. Fin <-> ( # ` k ) e. NN0 ) ) |
|
83 | 82 | biimprd | |- ( k e. _V -> ( ( # ` k ) e. NN0 -> k e. Fin ) ) |
84 | 83 | elv | |- ( ( # ` k ) e. NN0 -> k e. Fin ) |
85 | eqid | |- ( k \ { n } ) = ( k \ { n } ) |
|
86 | eqid | |- { i e. dom e | n e/ ( e ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
|
87 | 59 | dmeqi | |- dom ( iEdg ` <. k , e >. ) = dom e |
88 | 87 | rabeqi | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } |
89 | eqidd | |- ( i e. dom e -> n = n ) |
|
90 | 59 | a1i | |- ( i e. dom e -> ( iEdg ` <. k , e >. ) = e ) |
91 | 90 | fveq1d | |- ( i e. dom e -> ( ( iEdg ` <. k , e >. ) ` i ) = ( e ` i ) ) |
92 | 89 91 | neleq12d | |- ( i e. dom e -> ( n e/ ( ( iEdg ` <. k , e >. ) ` i ) <-> n e/ ( e ` i ) ) ) |
93 | 92 | rabbiia | |- { i e. dom e | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
94 | 88 93 | eqtri | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
95 | 59 94 | reseq12i | |- ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) = ( e |` { i e. dom e | n e/ ( e ` i ) } ) |
96 | 37 60 85 86 95 40 | finsumvtxdg2sstep | |- ( ( ( <. k , e >. e. UPGraph /\ n e. k ) /\ ( k e. Fin /\ e e. Fin ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
97 | df-ov | |- ( k VtxDeg e ) = ( VtxDeg ` <. k , e >. ) |
|
98 | 97 | fveq1i | |- ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. k , e >. ) ` v ) |
99 | 98 | a1i | |- ( v e. k -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. k , e >. ) ` v ) ) |
100 | 99 | sumeq2i | |- sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) |
101 | 100 | eqeq1i | |- ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) = ( 2 x. ( # ` e ) ) ) |
102 | 96 101 | syl6ibr | |- ( ( ( <. k , e >. e. UPGraph /\ n e. k ) /\ ( k e. Fin /\ e e. Fin ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
103 | 102 | exp32 | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> ( k e. Fin -> ( e e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
104 | 103 | com34 | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> ( k e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
105 | 104 | 3adant2 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( k e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
106 | 84 105 | syl5 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( # ` k ) e. NN0 -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
107 | 81 106 | sylbid | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( y + 1 ) e. NN0 -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
108 | 107 | impcom | |- ( ( ( y + 1 ) e. NN0 /\ ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) |
109 | 108 | imp | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) ) /\ ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
110 | 5 7 19 33 41 54 78 109 | opfi1ind | |- ( ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph /\ ( Vtx ` G ) e. Fin ) -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
111 | 110 | ex | |- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph -> ( ( Vtx ` G ) e. Fin -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
112 | 4 111 | syl | |- ( G e. UPGraph -> ( ( Vtx ` G ) e. Fin -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
113 | 1 | eleq1i | |- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
114 | 113 | a1i | |- ( G e. UPGraph -> ( V e. Fin <-> ( Vtx ` G ) e. Fin ) ) |
115 | 2 | eleq1i | |- ( I e. Fin <-> ( iEdg ` G ) e. Fin ) |
116 | 115 | a1i | |- ( G e. UPGraph -> ( I e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
117 | 1 | a1i | |- ( G e. UPGraph -> V = ( Vtx ` G ) ) |
118 | vtxdgop | |- ( G e. UPGraph -> ( VtxDeg ` G ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
|
119 | 3 118 | syl5eq | |- ( G e. UPGraph -> D = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
120 | 119 | fveq1d | |- ( G e. UPGraph -> ( D ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
121 | 120 | adantr | |- ( ( G e. UPGraph /\ v e. V ) -> ( D ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
122 | 117 121 | sumeq12dv | |- ( G e. UPGraph -> sum_ v e. V ( D ` v ) = sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
123 | 2 | fveq2i | |- ( # ` I ) = ( # ` ( iEdg ` G ) ) |
124 | 123 | oveq2i | |- ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) |
125 | 124 | a1i | |- ( G e. UPGraph -> ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
126 | 122 125 | eqeq12d | |- ( G e. UPGraph -> ( sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) <-> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
127 | 116 126 | imbi12d | |- ( G e. UPGraph -> ( ( I e. Fin -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) <-> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
128 | 112 114 127 | 3imtr4d | |- ( G e. UPGraph -> ( V e. Fin -> ( I e. Fin -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) ) ) |
129 | 128 | 3imp | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |