Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in Bollobas p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th ) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum sum_ over an arbitrary set).
I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumvtxdg2size.v | |- V = ( Vtx ` G ) |
|
| sumvtxdg2size.i | |- I = ( iEdg ` G ) |
||
| sumvtxdg2size.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | finsumvtxdg2size | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumvtxdg2size.v | |- V = ( Vtx ` G ) |
|
| 2 | sumvtxdg2size.i | |- I = ( iEdg ` G ) |
|
| 3 | sumvtxdg2size.d | |- D = ( VtxDeg ` G ) |
|
| 4 | upgrop | |- ( G e. UPGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph ) |
|
| 5 | fvex | |- ( iEdg ` G ) e. _V |
|
| 6 | fvex | |- ( iEdg ` <. k , e >. ) e. _V |
|
| 7 | 6 | resex | |- ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. _V |
| 8 | eleq1 | |- ( e = ( iEdg ` G ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
|
| 9 | 8 | adantl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( e e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 10 | simpl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> k = ( Vtx ` G ) ) |
|
| 11 | oveq12 | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( k VtxDeg e ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
|
| 12 | 11 | fveq1d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( ( k VtxDeg e ) ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 13 | 12 | adantr | |- ( ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) /\ v e. k ) -> ( ( k VtxDeg e ) ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 14 | 10 13 | sumeq12dv | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 15 | fveq2 | |- ( e = ( iEdg ` G ) -> ( # ` e ) = ( # ` ( iEdg ` G ) ) ) |
|
| 16 | 15 | oveq2d | |- ( e = ( iEdg ` G ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
| 17 | 16 | adantl | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
| 18 | 14 17 | eqeq12d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
| 19 | 9 18 | imbi12d | |- ( ( k = ( Vtx ` G ) /\ e = ( iEdg ` G ) ) -> ( ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) <-> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
| 20 | eleq1 | |- ( e = f -> ( e e. Fin <-> f e. Fin ) ) |
|
| 21 | 20 | adantl | |- ( ( k = w /\ e = f ) -> ( e e. Fin <-> f e. Fin ) ) |
| 22 | simpl | |- ( ( k = w /\ e = f ) -> k = w ) |
|
| 23 | oveq12 | |- ( ( k = w /\ e = f ) -> ( k VtxDeg e ) = ( w VtxDeg f ) ) |
|
| 24 | df-ov | |- ( w VtxDeg f ) = ( VtxDeg ` <. w , f >. ) |
|
| 25 | 23 24 | eqtrdi | |- ( ( k = w /\ e = f ) -> ( k VtxDeg e ) = ( VtxDeg ` <. w , f >. ) ) |
| 26 | 25 | fveq1d | |- ( ( k = w /\ e = f ) -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
| 27 | 26 | adantr | |- ( ( ( k = w /\ e = f ) /\ v e. k ) -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
| 28 | 22 27 | sumeq12dv | |- ( ( k = w /\ e = f ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) ) |
| 29 | fveq2 | |- ( e = f -> ( # ` e ) = ( # ` f ) ) |
|
| 30 | 29 | oveq2d | |- ( e = f -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` f ) ) ) |
| 31 | 30 | adantl | |- ( ( k = w /\ e = f ) -> ( 2 x. ( # ` e ) ) = ( 2 x. ( # ` f ) ) ) |
| 32 | 28 31 | eqeq12d | |- ( ( k = w /\ e = f ) -> ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) ) |
| 33 | 21 32 | imbi12d | |- ( ( k = w /\ e = f ) -> ( ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) <-> ( f e. Fin -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) ) ) |
| 34 | vex | |- k e. _V |
|
| 35 | vex | |- e e. _V |
|
| 36 | 34 35 | opvtxfvi | |- ( Vtx ` <. k , e >. ) = k |
| 37 | 36 | eqcomi | |- k = ( Vtx ` <. k , e >. ) |
| 38 | eqid | |- ( iEdg ` <. k , e >. ) = ( iEdg ` <. k , e >. ) |
|
| 39 | eqid | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } |
|
| 40 | eqid | |- <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. = <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. |
|
| 41 | 37 38 39 40 | upgrres | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. e. UPGraph ) |
| 42 | eleq1 | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( f e. Fin <-> ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin ) ) |
|
| 43 | 42 | adantl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( f e. Fin <-> ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin ) ) |
| 44 | simpl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> w = ( k \ { n } ) ) |
|
| 45 | opeq12 | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> <. w , f >. = <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) |
|
| 46 | 45 | fveq2d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( VtxDeg ` <. w , f >. ) = ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ) |
| 47 | 46 | fveq1d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( ( VtxDeg ` <. w , f >. ) ` v ) = ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
| 48 | 47 | adantr | |- ( ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) /\ v e. w ) -> ( ( VtxDeg ` <. w , f >. ) ` v ) = ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
| 49 | 44 48 | sumeq12dv | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) ) |
| 50 | fveq2 | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( # ` f ) = ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) |
|
| 51 | 50 | oveq2d | |- ( f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) -> ( 2 x. ( # ` f ) ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) |
| 52 | 51 | adantl | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( 2 x. ( # ` f ) ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) |
| 53 | 49 52 | eqeq12d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) <-> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) |
| 54 | 43 53 | imbi12d | |- ( ( w = ( k \ { n } ) /\ f = ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) -> ( ( f e. Fin -> sum_ v e. w ( ( VtxDeg ` <. w , f >. ) ` v ) = ( 2 x. ( # ` f ) ) ) <-> ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) ) |
| 55 | hasheq0 | |- ( k e. _V -> ( ( # ` k ) = 0 <-> k = (/) ) ) |
|
| 56 | 55 | elv | |- ( ( # ` k ) = 0 <-> k = (/) ) |
| 57 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 58 | 57 | a1i | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( 2 x. 0 ) = 0 ) |
| 59 | 34 35 | opiedgfvi | |- ( iEdg ` <. k , e >. ) = e |
| 60 | 59 | eqcomi | |- e = ( iEdg ` <. k , e >. ) |
| 61 | upgruhgr | |- ( <. k , e >. e. UPGraph -> <. k , e >. e. UHGraph ) |
|
| 62 | 61 | adantr | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> <. k , e >. e. UHGraph ) |
| 63 | 37 | eqeq1i | |- ( k = (/) <-> ( Vtx ` <. k , e >. ) = (/) ) |
| 64 | uhgr0vb | |- ( ( <. k , e >. e. UPGraph /\ ( Vtx ` <. k , e >. ) = (/) ) -> ( <. k , e >. e. UHGraph <-> ( iEdg ` <. k , e >. ) = (/) ) ) |
|
| 65 | 63 64 | sylan2b | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( <. k , e >. e. UHGraph <-> ( iEdg ` <. k , e >. ) = (/) ) ) |
| 66 | 62 65 | mpbid | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( iEdg ` <. k , e >. ) = (/) ) |
| 67 | 60 66 | eqtrid | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> e = (/) ) |
| 68 | hasheq0 | |- ( e e. _V -> ( ( # ` e ) = 0 <-> e = (/) ) ) |
|
| 69 | 68 | elv | |- ( ( # ` e ) = 0 <-> e = (/) ) |
| 70 | 67 69 | sylibr | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( # ` e ) = 0 ) |
| 71 | 70 | oveq2d | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> ( 2 x. ( # ` e ) ) = ( 2 x. 0 ) ) |
| 72 | sumeq1 | |- ( k = (/) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. (/) ( ( k VtxDeg e ) ` v ) ) |
|
| 73 | sum0 | |- sum_ v e. (/) ( ( k VtxDeg e ) ` v ) = 0 |
|
| 74 | 72 73 | eqtrdi | |- ( k = (/) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = 0 ) |
| 75 | 74 | adantl | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = 0 ) |
| 76 | 58 71 75 | 3eqtr4rd | |- ( ( <. k , e >. e. UPGraph /\ k = (/) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) |
| 77 | 56 76 | sylan2b | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = 0 ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) |
| 78 | 77 | a1d | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = 0 ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
| 79 | eleq1 | |- ( ( y + 1 ) = ( # ` k ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
|
| 80 | 79 | eqcoms | |- ( ( # ` k ) = ( y + 1 ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
| 81 | 80 | 3ad2ant2 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( y + 1 ) e. NN0 <-> ( # ` k ) e. NN0 ) ) |
| 82 | hashclb | |- ( k e. _V -> ( k e. Fin <-> ( # ` k ) e. NN0 ) ) |
|
| 83 | 82 | biimprd | |- ( k e. _V -> ( ( # ` k ) e. NN0 -> k e. Fin ) ) |
| 84 | 83 | elv | |- ( ( # ` k ) e. NN0 -> k e. Fin ) |
| 85 | eqid | |- ( k \ { n } ) = ( k \ { n } ) |
|
| 86 | eqid | |- { i e. dom e | n e/ ( e ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
|
| 87 | 59 | dmeqi | |- dom ( iEdg ` <. k , e >. ) = dom e |
| 88 | 87 | rabeqi | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } |
| 89 | eqidd | |- ( i e. dom e -> n = n ) |
|
| 90 | 59 | a1i | |- ( i e. dom e -> ( iEdg ` <. k , e >. ) = e ) |
| 91 | 90 | fveq1d | |- ( i e. dom e -> ( ( iEdg ` <. k , e >. ) ` i ) = ( e ` i ) ) |
| 92 | 89 91 | neleq12d | |- ( i e. dom e -> ( n e/ ( ( iEdg ` <. k , e >. ) ` i ) <-> n e/ ( e ` i ) ) ) |
| 93 | 92 | rabbiia | |- { i e. dom e | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
| 94 | 88 93 | eqtri | |- { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } = { i e. dom e | n e/ ( e ` i ) } |
| 95 | 59 94 | reseq12i | |- ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) = ( e |` { i e. dom e | n e/ ( e ` i ) } ) |
| 96 | 37 60 85 86 95 40 | finsumvtxdg2sstep | |- ( ( ( <. k , e >. e. UPGraph /\ n e. k ) /\ ( k e. Fin /\ e e. Fin ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
| 97 | df-ov | |- ( k VtxDeg e ) = ( VtxDeg ` <. k , e >. ) |
|
| 98 | 97 | fveq1i | |- ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. k , e >. ) ` v ) |
| 99 | 98 | a1i | |- ( v e. k -> ( ( k VtxDeg e ) ` v ) = ( ( VtxDeg ` <. k , e >. ) ` v ) ) |
| 100 | 99 | sumeq2i | |- sum_ v e. k ( ( k VtxDeg e ) ` v ) = sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) |
| 101 | 100 | eqeq1i | |- ( sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) <-> sum_ v e. k ( ( VtxDeg ` <. k , e >. ) ` v ) = ( 2 x. ( # ` e ) ) ) |
| 102 | 96 101 | imbitrrdi | |- ( ( ( <. k , e >. e. UPGraph /\ n e. k ) /\ ( k e. Fin /\ e e. Fin ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
| 103 | 102 | exp32 | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> ( k e. Fin -> ( e e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
| 104 | 103 | com34 | |- ( ( <. k , e >. e. UPGraph /\ n e. k ) -> ( k e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
| 105 | 104 | 3adant2 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( k e. Fin -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
| 106 | 84 105 | syl5 | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( # ` k ) e. NN0 -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
| 107 | 81 106 | sylbid | |- ( ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) -> ( ( y + 1 ) e. NN0 -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) ) |
| 108 | 107 | impcom | |- ( ( ( y + 1 ) e. NN0 /\ ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) ) -> ( ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) ) |
| 109 | 108 | imp | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. k , e >. e. UPGraph /\ ( # ` k ) = ( y + 1 ) /\ n e. k ) ) /\ ( ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) e. Fin -> sum_ v e. ( k \ { n } ) ( ( VtxDeg ` <. ( k \ { n } ) , ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) >. ) ` v ) = ( 2 x. ( # ` ( ( iEdg ` <. k , e >. ) |` { i e. dom ( iEdg ` <. k , e >. ) | n e/ ( ( iEdg ` <. k , e >. ) ` i ) } ) ) ) ) ) -> ( e e. Fin -> sum_ v e. k ( ( k VtxDeg e ) ` v ) = ( 2 x. ( # ` e ) ) ) ) |
| 110 | 5 7 19 33 41 54 78 109 | opfi1ind | |- ( ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph /\ ( Vtx ` G ) e. Fin ) -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
| 111 | 110 | ex | |- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph -> ( ( Vtx ` G ) e. Fin -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
| 112 | 4 111 | syl | |- ( G e. UPGraph -> ( ( Vtx ` G ) e. Fin -> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
| 113 | 1 | eleq1i | |- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
| 114 | 113 | a1i | |- ( G e. UPGraph -> ( V e. Fin <-> ( Vtx ` G ) e. Fin ) ) |
| 115 | 2 | eleq1i | |- ( I e. Fin <-> ( iEdg ` G ) e. Fin ) |
| 116 | 115 | a1i | |- ( G e. UPGraph -> ( I e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 117 | 1 | a1i | |- ( G e. UPGraph -> V = ( Vtx ` G ) ) |
| 118 | vtxdgop | |- ( G e. UPGraph -> ( VtxDeg ` G ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
|
| 119 | 3 118 | eqtrid | |- ( G e. UPGraph -> D = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |
| 120 | 119 | fveq1d | |- ( G e. UPGraph -> ( D ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 121 | 120 | adantr | |- ( ( G e. UPGraph /\ v e. V ) -> ( D ` v ) = ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 122 | 117 121 | sumeq12dv | |- ( G e. UPGraph -> sum_ v e. V ( D ` v ) = sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) ) |
| 123 | 2 | fveq2i | |- ( # ` I ) = ( # ` ( iEdg ` G ) ) |
| 124 | 123 | oveq2i | |- ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) |
| 125 | 124 | a1i | |- ( G e. UPGraph -> ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) |
| 126 | 122 125 | eqeq12d | |- ( G e. UPGraph -> ( sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) <-> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) |
| 127 | 116 126 | imbi12d | |- ( G e. UPGraph -> ( ( I e. Fin -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) <-> ( ( iEdg ` G ) e. Fin -> sum_ v e. ( Vtx ` G ) ( ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ` v ) = ( 2 x. ( # ` ( iEdg ` G ) ) ) ) ) ) |
| 128 | 112 114 127 | 3imtr4d | |- ( G e. UPGraph -> ( V e. Fin -> ( I e. Fin -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) ) ) |
| 129 | 128 | 3imp | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |