Step |
Hyp |
Ref |
Expression |
1 |
|
fint.1 |
|- B =/= (/) |
2 |
|
ssint |
|- ( ran F C_ |^| B <-> A. x e. B ran F C_ x ) |
3 |
2
|
anbi2i |
|- ( ( F Fn A /\ ran F C_ |^| B ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) |
4 |
|
r19.28zv |
|- ( B =/= (/) -> ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) ) |
5 |
1 4
|
ax-mp |
|- ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) |
6 |
3 5
|
bitr4i |
|- ( ( F Fn A /\ ran F C_ |^| B ) <-> A. x e. B ( F Fn A /\ ran F C_ x ) ) |
7 |
|
df-f |
|- ( F : A --> |^| B <-> ( F Fn A /\ ran F C_ |^| B ) ) |
8 |
|
df-f |
|- ( F : A --> x <-> ( F Fn A /\ ran F C_ x ) ) |
9 |
8
|
ralbii |
|- ( A. x e. B F : A --> x <-> A. x e. B ( F Fn A /\ ran F C_ x ) ) |
10 |
6 7 9
|
3bitr4i |
|- ( F : A --> |^| B <-> A. x e. B F : A --> x ) |