| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fint.1 | 
							 |-  B =/= (/)  | 
						
						
							| 2 | 
							
								
							 | 
							ssint | 
							 |-  ( ran F C_ |^| B <-> A. x e. B ran F C_ x )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi2i | 
							 |-  ( ( F Fn A /\ ran F C_ |^| B ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							r19.28zv | 
							 |-  ( B =/= (/) -> ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							ax-mp | 
							 |-  ( A. x e. B ( F Fn A /\ ran F C_ x ) <-> ( F Fn A /\ A. x e. B ran F C_ x ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							bitr4i | 
							 |-  ( ( F Fn A /\ ran F C_ |^| B ) <-> A. x e. B ( F Fn A /\ ran F C_ x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-f | 
							 |-  ( F : A --> |^| B <-> ( F Fn A /\ ran F C_ |^| B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-f | 
							 |-  ( F : A --> x <-> ( F Fn A /\ ran F C_ x ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralbii | 
							 |-  ( A. x e. B F : A --> x <-> A. x e. B ( F Fn A /\ ran F C_ x ) )  | 
						
						
							| 10 | 
							
								6 7 9
							 | 
							3bitr4i | 
							 |-  ( F : A --> |^| B <-> A. x e. B F : A --> x )  |